
Information Systems 84 (2019) 63–87

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Semi-automatic inductive construction of reference processmodels
that represent best practices in public administrations: Amethod
Hendrik Scholta a,∗, Marco Niemann a, Patrick Delfmann b, Michael Räckers a, Jörg Becker a

a University of Muenster - ERCIS, Leonardo-Campus 3, 48149 Muenster, Germany
b University of Koblenz–Landau, Universitätsstraße 1, 56070 Koblenz, Germany

h i g h l i g h t s

• Inductive reference modeling (IRM) is regarded supportive for process management.
• Current IRM methods consider common practices in reference models only.
• We build the first IRM method that also allows to detect and include best practices.
• We conceptualize the method and demonstrate its functionality using an example.
• We implement the method and provide a workshop-based evaluation.

a r t i c l e i n f o

Article history:
Received 23 February 2018
Received in revised form 23 February 2019
Accepted 4 March 2019
Available online 20 March 2019
Recommended by Matthias Weidlich

Keywords:
Process management
Process modeling
Reference modeling
Process model merge
E-government
Public administration
Benchmarking
Model querying

a b s t r a c t

Business process management often uses reference models to improve processes or as starting point
when creating individual process models. The current academic literature offers primarily deductive
methods with which to develop these reference models, although some methods develop reference
models inductively from a set of individual process models, focusing on deriving and representing
common practices. However, there is no inductive method with which to detect best practices and
represent them in a reference model. This paper addresses this research gap by proposing a method
by which to develop reference process models that represent best practices in public administrations
semi-automatically and inductively. The method uses a merged model that retains the structure of the
source models while detecting their common parts. It identifies best practices using query constructs
and ranking criteria to group the source models’ elements and to evaluate these groups. We provide
a conceptualization of the method and demonstrate its functionality using an artificial example. We
describe our implementation of the method in a software prototype and report on its evaluation in a
workshop with domain and method experts who applied the method to real-world process models.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Public administrations have increasingly recognized the need
to improve their internal processes [1,2]. One way to improve
processes is to align existing processes with best practices, rep-
resented by reference process models [3], which are ‘‘generic
conceptual models that formalise recommended practices for a
certain domain’’ [3, p. 595]. Reference models may also be used
as a basis in a modeling process and adapted to a specific organi-
zation afterward instead of creating a process model from scratch,
decreasing modeling time and cost [3,4].

∗ Corresponding author.
E-mail addresses: hendrik.scholta@ercis.uni-muenster.de (H. Scholta),

marco.niemann@ercis.uni-muenster.de (M. Niemann), delfmann@uni-koblenz.de
(P. Delfmann), michael.raeckers@ercis.uni-muenster.de (M. Räckers),
joerg.becker@ercis.uni-muenster.de (J. Becker).

A considerable amount of research has focused on reference
process modeling in general [5–10] and in the domain of public
administrations in particular [11–13]. Both deductive and in-
ductive strategies are used in designing reference models [14],
where deductive methods create reference models by specializing
general theories and concepts, and inductive methods general-
ize individual models by abstracting from unnecessary details.
The literature has offered a few inductive methods, but most of
the strategies for reference model construction are deductive in
nature [15,16].

Despite their rare use, inductive methods are relevant to busi-
ness process management since individual models are opera-
tionalizations of abstract guidelines like laws or business rules.
For instance, laws specify the requirements an applicant must
meet to receive a service, and public administrations check these
requirements in the course of service delivery. Process models
concretize such laws by specifying how to check the requirements

https://doi.org/10.1016/j.is.2019.03.001
0306-4379/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.is.2019.03.001
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2019.03.001&domain=pdf
mailto:hendrik.scholta@ercis.uni-muenster.de
mailto:marco.niemann@ercis.uni-muenster.de
mailto:delfmann@uni-koblenz.de
mailto:michael.raeckers@ercis.uni-muenster.de
mailto:joerg.becker@ercis.uni-muenster.de
https://doi.org/10.1016/j.is.2019.03.001

64 H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87

and in what order. Inductive methods provide empirical evidence
and are realistic solutions to organizational problems, as has
been shown in practice. In contrast, there is no guarantee of
the practical feasibility of deductively developed reference mod-
els. While many reference models have been developed at least
partly inductively [16], and several automatic or semi-automatic
inductive methods have recently emerged that focus on deriv-
ing and representing common practices using reference models
(e.g., [17–19]), the use of induction to develop reference process
models that represent best practices has not yet been investigated.
In particular, no methods have been developed that consider
the definition of ‘‘best’’ depending on the application context.
Therefore, focusing on the specific domain of public adminis-
trations, this paper’s research goal is to design a method that
semi-automatically constructs from a set of individual process mod-
els reference process models that represent best practices in public
administrations.

The method designed here, called RefPA (a combination of
‘‘reference model’’ and ‘‘public administration’’), returns a refer-
ence model from individual models that various institutions have
created using the same modeling language and that deal with the
same process. The paper refers to the individual models that serve
as a basis for the reference model’s construction as source models.

The RefPA method uses three main steps to detect and rep-
resent best practices in process models. The preprocessing step
merges all source models into a single model that defines the
reference model’s structural foundation. We recommend using
one of the many methods that have been defined for merging
process models, rather than defining yet another model-merge
method for this step. Then, in the first step, the elements that are
common to all source models are considered best practices and
retained in the merged model, as all models use them to provide
an equal solution. In the second step, we identify best practices
for tasks that have differing solutions in the source models by
formulating queries for the source models and then comparing
their model segments according to best practice criteria that we
identified by means of an extensive literature study. The seg-
ments that perform best remain in the merged model. Thus, this
paper’s main contribution is a specialized query language to detect
best practices in process models that should be combined in a
reference model. This query language differs from existing model-
query languages, as it allows model elements to be grouped to
form model segments and such groups to be evaluated to detect
best practices.

However, the notion of best practices in this paper is limited to
the set of available source models. As RefPA operates only on the
source models, it detects only the best practices that are in the
source models, not best practices that are theoretically possible
and theoretically superior but are not in the source models.
Therefore, we cannot assume that no solution is possible that is
better than the solutions that are available in the source models.
In addition, the definition of best practices always depends on
the user’s perception. For example, some people seek a low-cost
solution regardless of quality, while others seek a high-quality so-
lution, regardless of cost. Hence, RefPA does not provide objective
best practices but makes suggestions for subjective best practices
that the user evaluates based on his or her expertise and goal.
Consequently, users can interpret RefPA’s results as suggestions
for relative and perceived best practices.

RefPA can be used to develop a reference model that is dedi-
cated to public administrations in general. The context of public
administrations is especially suitable for creating inductive ref-
erence models as, in contrast to private organizations, public
administrations tend toward collaboration instead of competi-
tion [20]. The tendency to collaborate facilitates the sharing of
process models for the same tasks and services, which is nec-
essary in consolidating several process models from multiple

organizations into reference models. Process model libraries that
share process knowledge across public administrations can help
reference modelers to implement the RefPA method [21,22] by
acquiring as many source models as possible to increase the
probability that the set of source models will include not only
relative but also absolute best practices. Excess source models
that do not contain best practices do not negatively influence the
resulting reference model, as their practices are not incorporated
into the reference model.

RefPA can also be applied to the development of a reference
model that is relevant to a specific context. Since the same legal
regulations define the services and processes of numerous public
administrations and limit their flexibility [20], process managers
can use RefPA in process-harmonization scenarios to increase ef-
ficiency. Public administrations that introduce a commonly used
software system can implement a reference process model that
uses a set of source models that the public administrations that
participate in the project define.

This paper’s research methodology is based on the design
science research paradigm [23] and the design science research
methodology (DSRM) presented by Peffers et al. [24]. Since we
seek to design a practical IT artifact, we define the research
gap (step 1, as above), derive the solution’s requirements and
objective and discuss related work (step 2, in Section 2), develop
the artifact – the RefPA method – (step 3, in Section 3), demon-
strate the method’s functionality by applying it to an artificial
example (step 4, in Section 4), and present the results of our
evaluation (step 5, in Section 5). Finally, we provide a conclusion
and suggestions for future work in Section 6. We also conducted
classic software engineering to implement our IT artifact and
evaluated the IT artifact in a workshop in which the prototype
was used and tested with domain and method experts. Data for
the evaluation was collected based on responses from workshop
participants to a questionnaire that assessed our IT artifact in the
spirit of the DSRM.

2. Foundations and research gap

2.1. Requirements

This section presents the requirements for a method that
semi-automatically and inductively constructs reference process
models that represent best practices. We derived the require-
ments based on the literature and our expertise and experience
in research and practice but do not claim that the list of re-
quirements is complete. Our derivation of requirements revealed
that, to meet the goal of detecting and representing best prac-
tices, RefPA must meet four functional and one non-functional
requirements.

(a) Functional Requirements (FRQs)

FRQ1: Segmentation. To detect best practices, an inductive ref-
erence modeling method must divide the source models into
segments, as not all best practices are contained in a single source
model. Therefore, segments of the source models, not entire mod-
els, constitute best practices. Model segments are subgraphs with
nodes and edges, so the solution must form groups of nodes and
edges in each source model. As model segments are solutions for
certain tasks, and the tasks that are relevant to a reference model
depend on the purpose of the reference model and, thus, vary
from case to case [25,26], the user must define what constitutes
the groups. Consequently, the solution must offer a mechanism
that allows the user to segment the source models into groups.

FRQ2: Evaluation. Since the goal is to detect best practices and
detecting the ‘‘best’’ implies a ranking [27], the groups mentioned

H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87 65

in FRQ1 must be compared, evaluated, and ranked. As the defini-
tion of ‘‘best’’ (e.g., fastest, cheapest) depends on the reference
model’s goal, the user must specify the parameters for the eval-
uation. Therefore, an inductive reference modeling method must
have a repository that contains various interpretations of ‘‘best’’
with which to evaluate groups. Since public administrations and
private companies differ [28], the solution must be tailored to
the appropriate domain. To be precise, the solution should also
use the semantic information of process model activities, such
as roles and software systems. Consequently, the solution must
provide a mechanism that allows the user to evaluate and rank
groups.

FRQ3: Integration. To represent best practices, the solution inte-
grates groups that depict best practices into a single reference
model. Because of its inductive nature, the method produces a
reference model by integrating the source models, which is the
constituting characteristic of all inductive methods [14]. Thus, the
source models predefine the structure of the resulting reference
model, which contains activities and control-flow relationships
that are present in at least one source model. However, since
not all of the source models’ elements constitute best practices,
the solution incorporates only those activities and control-flow
relationships that constitute best practices.

FRQ4: Modeling Language. To support a wide range of scenarios
and achieve a high degree of generalizability, a solution cannot
be limited to a certain process modeling language but must be
able to operate on process models regardless of their modeling
language. However, all of the source models must share the same
modeling language. Since public administrations use multiple
modeling languages, such generality is necessary if the reference
model is to be adopted regularly in practice [29]. Consequently, a
solution must rely on a formalization that fits the characteristics
of process modeling languages in general.

(b) Non-Functional Requirements (NFRQs)

NFRQ1: Applicability. Since a reference model has a wide range
of applications, a large variety of potential users, including IT
experts but also process managers in public administrations who
may not have comprehensive IT knowledge, should be able to
apply the solution. Consequently, a solution must have a high
perceived ease of use, that is, a high ‘‘degree to which a person
believes that using a particular system would be free of effort’’
[30, p. 320]. A system or method has a high perceived ease of
use if it is easy to learn, controllable, clear and understandable,
flexible, easy to master, and easy to use [30].

2.2. Related work

Before outlining our RefPA method in Section 3, we take a step
back and analyze prior research to describe the state of the art
and the existing research gaps with regard to the five require-
ments. We sought research on methods for creating reference
process models inductively and proposed languages for querying
process models. The assessment distinguished three degrees of
fulfillment, +, o, and -, per requirement, as shown in Table 1.
Only the FRQs are addressed in Table 1, as NFRQs would require
a different mode of analysis because of their subjectivity and
relativity [31].

2.2.1. Methods for the inductive creation of reference process models
While this paper develops a novel inductive method with

which to create reference process models, many contributions
have been made to inductive reference process modeling in the
last decade, which range from largely generic procedure mod-
els that focus, for instance, on selecting appropriate modeling

techniques based on situational contexts [32] to fully algorithmic
methods that, for instance, use genetic algorithms [33] or factor
analysis [17]. Our non-exhaustive sample even includes one pub-
lication [34] that was originally set in the process-model-merging
domain and, through the application of thresholds, represents a
form of inductive reference process modeling.

The results of our assessments are summarized in Table 2. We
selected a first set of inductive methods based on our knowledge
as experts in the field. We complemented this initial set of meth-
ods using the results of a keyword-based search with keywords
like ‘‘Inductive’’, ‘‘Reference Model’’, ‘‘Development’’, and ‘‘Con-
struction’’, and a subsequent backward and forward search of the
resulting articles. As Table 2 shows, none of the existing methods
covers all of the requirements for the detection and representa-
tion of best practices. Especially in terms of segmenting processes
and evaluating these segments, which are necessary to detect
‘‘best’’ process parts, many of the extant work has fallen short,
as they typically provide reference models that represent ‘‘com-
mon’’ practices. The subsequent paragraphs outline our reasoning
behind the assessments presented in Table 2.

Algorithmic Methods
The first subgroup of related methods we analyzed are algo-

rithmic methods. Similar to the proposed RefPA method, they all
provide a full algorithmic description of how to elicit a reference
model inductively from a set of input process models.

Almost all members of this class of methods fulfill the inte-
gration requirement, FRQ3. Considering that all methods seek to
derive a reference model based on a set of source models, the
high degree of fulfillment is not surprising. However, the methods
contain significant differences in how Integration is handled. One
set of algorithms approaches the task of assembling the reference
model by iteratively including activities and flow relationships,
omitting any form of upstream segmentation. A typical example
is Yahya et al. [40], who base their method on the so-called ac-
tivity proximity score (APS), a measure that indicates the average
proximity of two activities across a set of processes, and build
their reference model by determining a start activity and then
adding the activities with the highest APS. Other algorithms, such
as the one based on genetic algorithms (GAs) Yahya et al. [41]
propose, encode activities and flow relationships in a numeric
‘‘genome’’, apply the GAs and then set up the reference model by
decoding the genome into a graph structure again. Other authors,
such as Rehse et al. [16], take an Integration approach similar to
the RefPA approach described in Section 3 (especially Sections 3.3
and 3.6) by segmenting the source models and recombining the
reference model from a selected set of segments. However, one
algorithmic method, that of Martens et al. [17], does not address
FRQ3, as instead of reassembling common – or best – parts from
the source models, they perform a factor and cluster analysis
based on the adjacency matrix to identify the source model that
is closest to the intended reference process model and then fine-
tune it by removing the edges and nodes that are not sufficiently
common.

Another requirement that stands out is FRQ2, which deals
with the Evaluation of activities and groups. While none of the
methods in the extant literature totally fulfills the requirement,
all methods do so at least partially. Considering that a reference
model, in contrast to, for example, a merged model, typically has
at least some form of filtering to detect the commonalities or
best practices, the degree of fulfillment observed is not surprising.
The simplest form of evaluation used in the single methods is
frequency-based thresholding. For example, La Rosa et al. [34] use
the frequency of flow relationships across the source models to
remove those that are not sufficiently common. Similarly, Rehse
et al.’s [16] method uses frequency to identify subgraphs that
should be integrated into the reference model, while Li et al. [36]

66 H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87

Table 1
Evaluation criteria for the assessment of existing methods.

− O +

FRQ1: No segmentation Segmentation without user input User-parameterized segmentation
FRQ2: No evaluation of groups/single

activities
Some form of evaluation of groups/single
activities

User-parameterized evaluation of groups/single
activities, including ranking

FRQ3: No assembly of a reference
model

Assembly of some form of reference model

FRQ4: ≤1 language ≥ 1 language (no clear statement regarding
whether more than one language is possible)

>1 language

Table 2
Comparison of RefPA to related methods.

Method FRQ1
(Segmentation)

FRQ2
(Evaluation)

FRQ3
(Integration)

FRQ4
(Modeling Language)

Algorithmic Methods

[18] o o + –
[34]a o o + –
[35] o o + –
[36]b o o + o
[33] o o + o
[17] – o – +

[37] – o + +

[38] – o + –
[16] o o + +

[19] – o + –
[39] – o + o
[40] – o + o
[41] – o + o

Generic Procedure Models

[42] o o + +

[32] –c – – +

[43] – – – +

[44] – – + –

RefPA + + + +

aTwo methods are presented; the first creates a merged model and the second derives a reference model. Since
they build on each other, they are considered one method.
bOf the two methods proposed (configuring an existing reference model; discovering a reference model), only the
discovery method is relevant to our context.
cThe paper does not discuss FRQ1, FRQ2, or FRQ3 since it does not propose a novel method but gives advice on
how to choose a valid technique.

again use activity frequencies to evaluate which activities to
transfer into a reference model. The remaining methods use other
and often more sophisticated evaluation strategies, especially the
methods that use GAs and evolutionary strategies [19,33,39,41].
For example, Sonntag et al. [19] generate their reference models
not based on the source models’ graph structures but on so-called
performer networks (PNs) (the social networks of the agents who
perform the business processes). Hence, they use an evolutionary
strategy to create network solutions and evaluate them with a
fitness function that determines the networks’ efficiency toward
each input model to select the best PN and derive the final
reference model. Yahya et al. [39] go farther in evaluating their
GAs’ genomes based on multiple objectives (maximum proximity
score, as defined in [45], cost, and duration) that are restricted
by an even larger set of constraints (e.g., start nodes that have
no predecessors). As a result of using multi-objective optimiza-
tion, each evaluation returns multiple ‘‘best’’ solutions, although
without giving the user the chance to parameterize the evaluation
further.

While FRQ2 and FRQ3 are at least partially fulfilled by almost
all of the related methods analyzed here, FRQ1 sorts out half of the
methods since they support neither user-parameterized segmen-
tation nor segmentation in general. However, even among the
methods that use segmentation, the exact type of segmentation
differs. Some authors, such as Leng and Jiang [35], determine
the longest common subsequences within the source models
and used them to assemble the final reference model. Others
(e.g., Ardalani et al. [18] and Rehse et al. [16]) are even more
restrictive, limiting their segments to two and one consecutive

elements, respectively, to which they refer as a ‘‘singleton sub-
graph’’ [16]. Hence, among the few methods that at least segment
the source models into common – not best – subsequences, some
severely restrict the potential segments based on computational
complexity [16]. Other methods (e.g., [41]) refrain completely
from using segments and consider only single activities and links
in the process-representing genomes from which their final ref-
erence models are derived item by item. Martens et al. [17] do
not even subdivide their source models into activities and flow
relationships but use factor and cluster analysis to identify the
most suitable reference model and refine it.

Compared to the other three requirements, FRQ4 is the most
diverse in terms of degree of fulfillment. A group of researchers
around Fettke and Loos proposes several methods that are explic-
itly tailored to work with event-driven process chains (EPC) [18,
19,38], while authors like Leng and Jiang [35] focus on a specific
representation of service processes. Other studies, such as [33]
and [40], are less restrictive but also more ambiguous regarding
the modeling language used, as they provide formal or informal
specifications of how business process models should look and
do not explicitly map these specifications to a specific notation.
However, both papers use examples and hints (‘‘exist, e.g. in
EPCs’’ [33, p. 4]), which makes it difficult to determine their
methods’ generalizability. On the other hand, some authors are
almost generic regarding their supported modeling languages. For
example, Rehse et al. [16] formally define processes in a way that
supports several notations, including EPC and BPMN, but point
out that their method does not support gateway-less modeling
languages. Others, such as Martens et al. [17, p. 442], go even

H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87 67

farther in fulfilling FRQ4 by explicitly providing a method that is
‘‘independent from a concrete modeling language’’.

Generic Procedure Models
Several more generic publications with regard to the creation

of reference process models range from procedure models on
how to create reference models – yet with no specific algorithmic
or implementation details – [42] to even more generic methods
that propose and use a reference process-mining technique that
is based only on a given context [32].

Table 2 shows several differences in these methods in compar-
ison to the algorithmic methods. For example, almost all of the
algorithmic methods fulfill FRQ3, only half of the generic meth-
ods achieve that degree of fulfillment. The two methods in [42]
and [44] outline a comparatively specific procedure model on
how to establish a reference model to fulfill FRQ3 since both point
out the necessity to assemble a reference model from elements
of the source models. The two methods that do not fulfill the
requirement are those that can be configured with specific mining
techniques, which then determine how the reference model is
assembled [32,43].

The generic methods’ difference from the algorithmic methods
is even more striking in FRQ2, as only one of the more generic
methods even partially fulfills the requirement. Even though [42]
does not provide a specific algorithm, it points out that suitable
elements for a reference process model must be chosen on the ba-
sis of sufficient commonality (frequency of occurrence in source
models). Other methods, such as [32] and [43], at best mention
that an evaluation may be required or possible but leave the
final decision and specification to the reference process-mining
technique chosen.

Similarly, [42] is the only method that explicitly mentions the
need for segmentation of subgraphs that are sufficiently common
among the source models. The other methods either refrain from
mentioning Segmentation at all [44] or leave the ‘‘if’’ and ‘‘how’’
of FRQ1 to a method that is chosen as part of the proposed
method [32,43].

FRQ4 is the one requirement for which the generic methods
outperform the algorithmic methods. Without giving exact al-
gorithmic descriptions, all methods except one that focuses on
Workflow Nets [44], are sufficiently generic to be implemented
in a wide variety of process modeling languages. The examples
and evaluations of [32,42,43] are based primarily on EPC process
models, given that the authors are part of the group of researchers
around Fettke and Loos, but they do not restrict themselves to
that modeling language.

This analysis makes apparent that none of the techniques
proposed to create reference models inductively can be used to
establish best practice models based on requirements FRQ1, FRQ2,
FRQ3, and FRQ4. While many of the methods we evaluated, as
expected, fulfill Integration, most struggle with either Segmenta-
tion or Evaluation in general or at least when it comes to the
parameterizable Segmentation and Evaluation to identify what is
‘‘best’’ for a given context and modeling goal.

2.2.2. Query languages for process models
One of the weak spots we identified is the weak level of

fulfillment of FRQ1 and FRQ2, so before proposing an entirely
novel method with which to create best practice reference mod-
els inductively, we looked at the domain of process model query
languages to find candidates for eliciting process segments that
could be extended to become methods for creating reference
process models. While many of the commonly stated definitions
implicitly or explicitly refer to the purpose of query languages in
the discovery and retrieval of process models that satisfy a user-
defined (e.g., textual or graph-structural queries as one form of
input) set of requirements [46–48], others suggest their applica-

bility to more analytical purposes, such as compliance, checking
for patterns of weakness [49], and several more [50].

The domain of query languages for process models and pro-
cess model repositories is largely mature, so we worked through
several recently published, major studies on process model query
languages [46,47,49–51] but did not find a suitable method for
reuse in the creation of reference process models. As expected,
none of the languages fulfills FRQ3. However, since the purpose
of model-querying languages is to elicit information from exist-
ing models, not to compose novel models, this criterion can be
neglected for the most part. While the ability to extract groups of
process model elements is one of the more common functionali-
ties of most query languages, such studies as those of Momotko
and Subieta [52] and Di Francescomarino and Tonella [53] show
that this ability is not guaranteed. However, a large number of
query languages are still viable in our context since they pro-
vide textual [49] or visual [54,55] constructs to find and extract
process model segments from a larger process model, fulfilling
FRQ1. Another hurdle many of the query languages fail to clear is
FRQ4, that is, the ability to support multiple Modeling Languages.
Here again, many of the proposed languages use components
that are specific to one modeling language (e.g., BPMN [52,55]
or BPEL [56]), but even those few languages that fulfill FRQ1 and
FRQ4 fail to fulfill FRQ2. While, GMQL [49] allows the attributes
of single activities to be queried, it does not provide functionality
needed to evaluate selected subgraphs based on a set of user-
defined parameters or even to rank them according to some
default criteria.

Therefore, while many process model query languages are
promising alternatives with regard to FRQ1, no candidate can
serve as the basis for the creation of reference process models.
Combining these insights with those from the prior subsection,
we conclude that, while several methods create reference process
models inductively, no method has been proposed to create best
practice reference process models, as specified by FRQ1, FRQ2,
FRQ3, and FRQ4.

The following section introduces the novel RefPA method,
which fulfills all four requirements and supports process man-
agers in establishing best practice reference process models.

3. The method

3.1. Overview

RefPA’s steps are visualized in Fig. 1. Steps with a user icon
at the top-right corner require user interventions, whereas steps
without a user icon are executed automatically. Fig. 1 inputs three
source models and their merged model to RefPA (step 0). The
merged model contains all of the source models’ nodes and edges
and serves as basis for the reference model. Since the reference
model emerges from the merged model, RefPA uses the merged
model to fulfill FRQ3, and since the reference model evolves from
the merged model by selecting and marking suitable elements,
the merged model determines the positions of the elements in
the reference model and the reference model keeps the structure
of the source models.

To identity best practices, that is, the elements that need to
be marked to be transferred to the reference model, RefPA first
detects common parts of the source models and then processes
non-common parts. Best practices are the elements all source
models agree are the only solution to a certain task in the process.
RefPA discovers segments that all source models have in common
(FRQ1) and marks them for the reference model (FRQ3). Further
evaluation of these segments is not necessary (FRQ2) since there
are no alternative solutions available in the solution space.

RefPA uses the merged model and its elements’ references
to their source elements to identify automatically the elements

68 H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87

that all of the source models use (step 1). If an element of the
merged model is common to all source models, then it has a
corresponding element in each source model, that is, the number
of elements it refers to is equal to the number of source models. In
Fig. 1, the number of referred elements is exemplarily annotated
next to each node. Since node A refers to three source elements
and there are three source models, A is a common element. On
the other hand, C has two source elements and is not a common
element (2 < 3). To incorporate all common process segments into
the reference model, common elements are automatically marked
and then transferred to the reference model in step 4. In Fig. 1,
marked nodes and edges are highlighted by bold text and lines.

RefPA must also detect the best solutions to tasks when the
source models’ solutions differ. To process these non-common
parts, the user can define queries that are automatically executed
in the source models to group model elements (FRQ1) and evalu-
ate these groups (FRQ2) in steps 2 and 3. Such queries detect best
practices since they evaluate the source models’ various solutions
to tasks based on best-practice criteria from the literature. The
grouping identifies ‘‘practices’’ and the evaluation identifies ‘‘best
practices’’. For example, the construct GROUP BY can be used
to specify how the elements are grouped, and ORDER BY can
be applied to specify how the groups are evaluated. The query
constructs build on the query language SQL to ensure a high level
of applicability (NFRQ1). The result of each query is an overview of
the ranking of the groups. The groups ranked at the top (Groups
II.1 and III.2 in Fig. 1) represent best practices, so the user can
mark these groups to be transferred to the reference model.

Finally, in step 4, the reference model is assembled (FRQ3) by
automatically removing nodes and edges from the merged model
that were not marked when the common parts were processed in
step 1 or when the non-common parts were processed in steps
2 and 3 (e.g., node C in Fig. 1). The user must ensure that the
reference model is connected and syntactically correct by, for
example, removing gateways if they have only one ingoing and
one outgoing edge. The user can rely on functionalities that have
been implemented in existing process modeling tools to check
the syntactic correctness of the resulting reference model.

The following subsections formalize and explain the steps in
detail. A list of symbols is provided in Appendix A.

3.2. Step 0: Source models

RefPA receives several process models as input. Based on [57],
and to meet FRQ4, we define a process modelmi generally as tuple
mi = (Ai, Bi, Fi, Pi, Vi, propsi) with 1 ≤ i ≤ |S| and

• Ai: A finite, non-empty set of activities
• Bi: A finite set of gateways
• Ni = Ai ∪ Bi: The set of nodes
• Fi ⊆ Ni × Ni: The set of flow relationships (i.e., edges)
• Pi: A finite, non-empty set of properties
• Vi: A finite, non-empty set of all occurring property values
• propsi: Ai × Pi → Vi is a mapping that assigns a property

value to a pair of one activity and one property.

S = {mi} denotes the set of source models. The property values in
Vi are sets used to, for instance, assign more than one data object
to an activity. Therefore, Vi is a set of sets.

Typical properties that are commonly used in process models
(e.g., [58–60]) include:

• Caption
• Data Object
• IT System
• Role
• External Stakeholder

• Legal Regulation
• Cost
• Time
• Probability

We use these properties to illustrate how RefPA works, although
this list is not exhaustive. One potential extension of the list could
be a differentiation between input data objects and output data
objects, where RefPA could refer to the data object and the in-
going or outgoing edge as one property. In general, all properties
of the activities provided by the process modeling language used
can be referred to in RefPA queries. When applying RefPA, the
user decides which of the properties provided by the respective
modeling language are to be accessed in the queries.

In the subsequent sections, we transform a tuple into a set. For
this purpose, we define the function Set

((
xj
))

= {xj|xj ∈
(
xj
)
}.

3.3. Step 0: Merged model; step 1: Detection of common parts

In addition to the source models, a merged model that consol-
idates the source models and is created manually or using one of
the existing algorithms is input to RefPA: mm = (Am, Bm, Fm, Pm,

Vm, propsm). Existing merge algorithms rely on mappings of the
source models’ elements. In RefPA’s subsequent steps, we use
such mappings that consist of the functions s_n and s_e:

• The function s_n:Nm → N1 × N2 × · · · × N|S| maps each
node of Nm to its counterparts in the source models. For
each nm ∈ Nm there is at least one mapped counterpart in at
least one source model and at most one counterpart in each
source model. If there is no counterpart in one of the source
models, then the corresponding part of the tuple s_n(nm)
is empty. s_n

(
nmj

)
=

(
n1j, n2j, . . . , n|S|j

)
, |Set(s_n (nm))| ∈

{1, . . . , |S|} , j ∈ {1, . . . , |Nm|}. In addition, for each source
node per source model, there is exactly one counterpart in
the merged model, that is, ∀k ∈ {1, . . . , |S|} , l ∈ {1, . . . , |Nk|}

∃!nmj ∈ Nm : nkl ∈ Set(s_n(nmj)).
• Similarly, the function s_e: Fm → F1 × F2 × · · · × F|S|

refers to the sources of a merged model’s edge. For each
fm ∈ Fm there is at least one mapped counterpart in at
least one source model and at most one counterpart in each
source model. If there is no counterpart in one of the source
models, then the corresponding part of the tuple s_e(fm)
is empty. s_e

(
fmj

)
=

(
f1j, f2j, . . . , f|S|j

)
, |Set(s_e (fm))| ∈

{1, . . . , |S|} , j ∈ {1, . . . , |Nm|}. Moreover, for each source
edge per source model, there is exactly one merged edge,
that is, ∀k ∈ {1, . . . , |S|} , l ∈ {1, . . . , |Fk|} ∃!fmj ∈

Fm : fkl ∈ Set(s_e(fmj)).

Since the reference model emerges from the merged model, we
define a function m_n:Nm → {0, 1} that indicates whether a
merged node has been marked to be transferred to the reference
model (m_n(nm) = 1) or not (m_n(nm) = 0). Similarly, we define
m_e: Fm → {0, 1}.

There can be at most one node per source model that refers to
a merged node; that is, a source node can be mapped to at most
only one other node of each source model. We restrict the method
to 1:1 mappings since otherwise merged nodes could be marked
even if the user selects only a small fraction of the merged node
in steps 2 and 3. For example, if a merged activity refers to twenty
activities in a first model and one activity in a second model, the
entire activity would have to be marked if the user selects a group
with only one of the activities of the first model, even though only
one-twentieth of its complexity affected the group.

H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87 69

Fig. 1. Steps of the proposed method.

All nodes nm ∈ Nm and edges fm ∈ Fm that have an equivalent
in all source models are common in all source models and will
finally be transferred to the reference model:

m_n(nm) =

{1 if |Set(s_n(nm))| = |S|
1 if nm is marked during steps 2 and 3
0 else

m_e(fm) =

{1 if |Set(s_e (fm))| = |S|
1 if fm is marked during steps 2 and 3
0 else

3.4. Step 2: Grouping

To group model elements, RefPA provides query constructs
similar to those in SQL: GROUP BY, CONTAINING, and WHERE. The
user applies GROUP BY to specify the property that constitutes
a group and uses CONTAINING and WHERE to specify conditions
that all activities (WHERE) or a single activity (CONTAINING) of a
group must meet.

3.4.1. GROUP BY
GROUP BY is used to specify the activities’ property for the

grouping—that is, which property, such as annotated IT systems
or executing role, must be equal for all of a group’s activities. For
instance, all of a source model’s activities that process the same
data object are grouped, and if two data objects are processed

in each source model, there are two groups per model (e.g., I.1
for the first data object and I.2 for the second data object in
source model I in Fig. 1). All activities of a group share common
values for the property mentioned in the GROUP BY clause. How-
ever, GROUP BY cannot be used to ensure certain values for the
property of the groups’ activities (e.g., the data object must be
‘‘Application’’), as it requires only that activities have equal values
for the property mentioned in the clause without limiting the
equal values.

Formally, the function GroupBy receives the property pu se-
lected by the user as input and returns the set of all groups, which
is denoted as G. It uses the function GroupPerValueInModel to form
the groups. This function creates one group gr with all activities
of a model mi that share a value v for the selected property. Each
group is characterized by its set of activities Agr , the activities’
model, and the value that is common to all activities’ selected
property.

GroupPerValueInModel (mi, pu, v) = {gr} with gr = (v,mi,
Agr), Agr = {a ∈ Ai|v ∈ propsi (a, pu)} and Agr ̸= ∅

The groups of each individual model are consolidated by the
function GroupsPerModel:

GroupsPerModel (mi, pu)
= {GroupPerValueInModel (mi, pu, v) |v ∈ Val ∈ Vi}

The function GroupsPerModel returns all groups of one model.
Since GroupsPerModel iterates through all values that occur, it

70 H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87

identifies all possible groups for the property. Since the property
values are sets, v must be contained in the activities’ sets –
denoted as Val – for the selected property. For instance, if an
activity processes more than one data object and one of these
data objects is v, the activity belongs to the group of v.

The function GroupBy returns the set of all groups of model
elements. For this purpose, it consolidates the groups from all
source models:

G := GroupBy (pu) = {GroupsPerModel (mi, pu) |mi ∈ S}

We present the syntax to construct RefPA queries using the
Extended Backus–Naur form [61]. At the top, we have a queryS-
tatement, which can be subdivided using various constructs. A
groupBy clause is obligatory in a RefPA query since the aim is
to form and evaluate groups. At this stage, a queryStatement
consists only of a groupBy clause:

A groupBy clause starts with the keyword GROUP BY, which is
followed by the indication of the property p that is used to group
activities. The list of properties varies from modeling language to
modeling language. Since p depends on the modeling language
that was used to create the source models, we exemplarily men-
tion the properties listed in Section 3.2 in our specification of
p.

The formalization is illustrated with the two exemplary BPMN
process models in Fig. 2. We assume that the following GROUP BY
clause is applied to the example:

The GROUP BY clause groups the activities according to the
property Data Object. The function GroupPerValueInModel creates
two groups for model A and one group for model B. The first
group of model A contains the activities A1, A2, A3, and A4, which
share the value Data Object 1 for the property Data Object, and
the second group of model A consists of the activity A4 since it
has the value Data Object 2. Hence, the activity A4 belongs to two
groups. All of model B’s activities have the value Data Object 1 in
common, which leads to one group with B1, B2, B3 and B4. The
groups are then brought together per model by GroupsPerModel.
The set of all three groups is finally returned by the function
GroupBy.

3.4.2. CONTAINING
While GROUP BY specifies the grouping property, CONTAINING

and WHERE define conditions that groups must fulfill. CONTAIN-
ING is used to define conditions that must be valid for at least
one activity of a group, so it ensures that a group contains at
least one activity with certain property values. For instance, it can
specify that each group must consist of at least one activity that
is processed by a certain role. To define conditions for multiple
activities, several CONTAINING statements can be included in a
query, each of which must be met by one activity of a group. The
statements can be fulfilled by different activities but they can also
be fulfilled by the same activity.

Formally, the function Containing receives the set of groups G
returned by the function GroupBy and a statement scu created by
the user as input. It returns the set of all groups that fulfill the
conditions of the statement.

scu can be an atomic statement or a combined statement. To
specify the conditions, the user defines an atomic statement asc ,
which consists of three parameters: A property pu, a value vu,
and an operator oacu, the last of which denotes the relation-
ship between value and property. The user can combine atomic
statements to represent more complex conditions. A combined
statement csc consists of two parameters: a set of statements
sscu and an operator occu, which denotes the relationship be-
tween the statements. The two types of statements are formalized
as:

• asc = (pu, oacu, vu) with oacu ∈ {>, ≥, <,≤, =, ̸=}

• csc = (sscu, occu) with occu ∈ {AND,OR, XOR} and sscu as
a set of sub-statements. A sub-statement can be an atomic
statement or another combined statement.

The function EvalStateCont checks whether a group gr fulfills a
statement scu:

EvalStateCont (gr, scu)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if (scu is csc) ∧ (occu = AND)

∧((
∏

sub∈sscu

EvalStateCont (gr, sub)) = 1)

1 if (scu is csc) ∧ (occu = OR)

∧((
∑

sub∈sscu

EvalStateCont (gr, sub)) ≥ 1)

1 if (scu is csc) ∧ (occu = XOR)

∧((
∑

sub∈sscu

EvalStateCont (gr, sub)) = 1)

1 if (scu is asc) ∧ (oacu =>)

∧(∃a ∈ Agr with (v ∈ propsi (a, pu)) ∧ (v > vu))

1 if (scu is asc) ∧ (oacu =≥)

∧(∃a ∈ Agr with (v ∈ propsi (a, pu)) ∧ (v ≥ vu))

1 if (scu is asc) ∧ (oacu =<)

∧(∃a ∈ Agr with (v ∈ propsi (a, pu)) ∧ (v < vu))

1 if (scu is asc) ∧ (oacu =≤)

∧(∃a ∈ Agr with (v ∈ propsi (a, pu)) ∧ (v ≤ vu))

1 if (scu is asc) ∧ (oacu ==)

∧(∃a ∈ Agr with (v ∈ propsi (a, pu)) ∧ (v = vu))

1 if (scu is asc) ∧ (oacu ≠=)

∧(∃a ∈ Agr with (v ∈ propsi (a, pu)) ∧ (v ̸= vu))

0 else

An atomic statement is valid if the value inputted to the
function and the value for the inputted property of one activity of
the group have the relationship that is specified by the operator
(lines 4 to 9). For example, line 4 checks whether the statement is
an atomic statement, the operator is >, and there is an activity in
the group whose value for the property is greater than the value
specified by the user. A combined statement is valid if either all
sub-statements sub are valid (AND), at least one sub-statement is
valid (OR), or exactly one sub-statement is valid (XOR) (lines 1 to
3). To check the validity of each sub-statement, the function calls
itself for each sub-statement. For example, line 1 checks whether
the statement is a combined statement, the operator is AND, and
the product of EvalStateCont for all sub-statements equals 1; that
is, it checks that all sub-statements are valid. In all other cases, a
statement is not valid (line 10).

The function Containing returns the set of all groups that fulfill
the user’s statement; that is, the function EvalStateCont returns

H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87 71

Fig. 2. Two exemplary process models, A and B.

the positive result 1 for such groups; and the set G is updated
such that:

G := Containing (G, scu) = {gr ∈ G|EvalStateCont (gr, scu) = 1}

A RefPA query can contain several containing clauses, which
can be fulfilled by the same or different activities of a group:

A containing clause begins with the keyword CONTAINING.
The user can then specify an atomic statement asc or combined
statement csc. In an atomic statement, the user must specify the
property p, an operator oac, and a value string. We do not de-
tail string, which can be any arbitrary sequence of characters. A
combined statement consists of at least two sub-statements and
a combining operator but can also contain an arbitrary number
of additional sub-statements and combining operators.

We assume that the following clauses are applied to the ex-
ample in Fig. 2:

According to the GROUP BY clause, the activities are grouped
according to their roles—that is, we have one group for source
model A and one group for source model B. Each of the two
CONTAINING clauses must be fulfilled by one activity of each
group or the group will not be considered for further filtering
and evaluation. In each group, there must be an activity that
processes Data Object 1 or Data Object 3 and is executed by
Role 1. Since this condition is valid for all activities, both groups
fulfill this condition. The second CONTAINING clause requires one
activity with IT System 1 or IT System 2. Since there is no such
activity in the group of model A, this group is eliminated. The
only remaining group is model B’s group, as it includes activity
B4, which is supported by IT System 1.

3.4.3. WHERE
WHERE is applied to filter the set of groups according to their

activities’ properties. Certain values and conditions for activities
can be specified that must be valid for all of a group’s activi-
ties; for example, all activities of a group are not allowed to be
processed by a certain role.

The formalization of Where is the same as the formalization of
Containing , with one exception: ∃ is substituted by ∀ in lines 4 to
9 in the specification of EvalStateCont since the conditions must
be valid for all of a group’s activities, not just one.

The user can also integrate a where clause into a RefPA query:

A where clause is similar to a containing clause, as the only
difference is the keyword at the beginning of each clause.

72 H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87

We apply the following clauses to the example in Fig. 2:

The groups are created according to roles, so there is one group
per model. All of the groups’ activities must process either Data
Object 1 or Data Object 3 and must be performed by Role 1. Since
all activities are associated with Data Object 1 and executed by
Role 1, both groups fulfill this condition.

3.5. Step 3: Evaluation

RefPA provides two query constructs with which to evaluate
groups: ORDER BY and HAVING. The user applies ORDER BY to
specify how the groups are ordered and applies HAVING to filter
the set of groups according to certain aspects of evaluation.

RefPA provides a set of ranking criteria to facilitate evaluation
of groups with these constructs. We observed the ranking crite-
ria in the literature on best practices and developed additional
ranking criteria based on the properties provided by process
modeling languages, as listed in Section 3.2. Table 3 shows the
ranking criteria, not all of which are relevant to every scenario;
in some scenarios, public administrations aim for high values for a
particular criterion and low values for the same criterion in other
scenarios. Therefore, the user must select appropriate criteria
based on the scenario’s goals and circumstances and the user’s
preferences. To compute the results of a query, we developed
calculations for the ranking criteria, shown in Appendix B.

3.5.1. HAVING
The query construct HAVING uses these ranking criteria and

can be applied to define conditions that must be fulfilled by the
entire group as an entity. For example, each group must have five
media changes at most or be a connected subgraph when it will
be considered for further processing.

Formally, and similar to Containing , the function Having re-
ceives the current set of groups G returned by the function Where
and a statement shu that the user creates as input. It returns the
set of all groups that fulfill the requirements of the statement.

The function Having processes two types of statements:

• ash = (cu, oahu, vu) with oahu ∈ {>, ≥, <,≤, =, ̸=}

• csh = (sshu) with sshu as a set of sub-statements. A sub-
statement can be an atomic statement or another combined
statement

An atomic statement is a three-tuple with a ranking criterion, an
operator oahu, and a value vu. cu:G → R is the function of a
ranking criterion (cf. Appendix B). A combined statement consists
of a set of statements and no operator since the statements are
always related by an AND connector.

The calculation of EvalStateHav follows the calculation of
EvalStateCont:

EvalStateHav (gr, shu)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (shu is csh) ∧ ((
∏

sub∈sshu

EvalStateHav (gr, sub)) = 1)

1 if (shu is ash) ∧ (oahu =>) ∧ (cu(gr) > vu)
1 if (shu is ash) ∧ (oahu =≥) ∧ (cu(gr) ≥ vu)

1 if (shu is ash) ∧ (oahu =<) ∧ (cu(gr) < vu)

1 if (shu is ash) ∧ (oahu =≤) ∧ (cu(gr) ≤ vu)

1 if (shu is ash) ∧ (oahu ==) ∧ (cu(gr) = vu)

1 if (shu is ash) ∧ (oahu ≠=) ∧ (cu(gr) ̸= vu)

0 else

For example, the second line checks whether the statement
is an atomic statement, the operator is >, and the value of the
ranking criterion’s function for the group is greater than the value
specified by the user.

The function Having returns the set of all groups that fulfill
the requirements of the statement and updates the set G:

G := Having (G, shu) = {gr ∈ G|EvalStateHav (gr, shu) = 1}

A RefPA query can contain a having clause:

A having clause begins with the keyword HAVING, which is
followed by an atomic statement ash or combined statement
csh. An atomic statement consists of a criterion crit, an opera-
tor oah, and a value string. The terminal expressions for crit
result from the criteria introduced in Section 3.5. A combined
statement can consist of several sub-statements but must have
at least two.

To illustrate the HAVING construct, we apply the following
clauses to the example in Fig. 2:

Again, the groups are formed according to the activities’ roles.
Both groups consist of four activities (fewer than five processing
steps), and have one role (fewer than two organizational units).
Thus, both groups fulfill the first two atomic statements. The
group of model B has one activity with an annotated IT system, so
this group also fulfills the third atomic statement. However, the
group of model A has no activity with an IT system, so this group
does not fulfill the third atomic statement and is eliminated from
further processing.

3.5.2. ORDER BY
The user applies ORDER BY to specify the ranking criteria to

be used to rate the groups. The user indicates for each criterion
whether groups are ordered in an ascending or descending order
since in some cases high values for a criterion are desirable and
in other cases low values are preferable (e.g., criterion 1).

Formally, the function OrderBy receives the final set of groups
G returned by the function Having and a selection of ranking
criteria critu that the user specifies as input, and returns a set
of preordered sets of G. OrderBy creates a preordered set for
each value of the grouping property; that is, it orders the groups
separately for each value that occurs in the property value sets.
For instance, if there are two data objects A and B, then OrderBy
creates two ordered sets, one for the groups whose activities all
deal with data object A and one for the groups whose activities
all deal with data object B. The result of OrderBy is the final result
of a RefPA query.

H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87 73

Table 3
Overview of ranking criteria.
Criterion Rationale

1 Documents
Source: [62]

Documents are inputs and outputs of services in public administrations that flow through their processes [63]. Services like the tax
declaration are characterized by many forms and attachments, so this criterion counts the number of data objects that are processed
by a group’s activities. A higher number of documents can be negative since more elements must be managed, increasing complexity,
but a higher number of documents can also be positive since documents can indicate a detailed structure.

2 Change of
documents
Source: [59]

Because of the importance of documents for public administrations, this criterion minimizes the changes in processed documents, so
it counts changes in data objects. First processing document D, then E, and finally D again might not be a good solution since
retrieving documents requires effort. This criterion is useful only if a group consists of a sequence of connected activities and does
not contain a set of individual activities that are widely spread across a model.

3 Organizational
units
Source: [64]

Analogous to criterion 1, this criterion counts the number of roles of a group’s activities. A high value can be negative since many
organizational units must be coordinated, but it can also be positive since the expertise of many organizational units can be
complementary. This aspect must be reflected based on the context, as there are various complex services, such as those in the
building permission area or the plan approval procedure, where complementary expertise is important.

4 Change of
organizational
units
Source: [64]

Analogous to criterion 2, this criterion computes the number of changes with regard to the roles of a group’s activities. A low value
is beneficial since frequent exchanges between organizational units mean that multiple people must be familiar with a case initially
or repeatedly, which constitutes avoidable effort. Exchanges and hand-overs between organizational units do not create value for
citizens and companies.

5 Software systems
Source: [65]

Analogous to criterion 1, this criterion counts the number of IT systems in a group’s activities. A high value can be negative since
many software systems must be coordinated and interfaces must be maintained, but it can also be positive since the impact of an
attack or breakdown can be limited. If a public administration uses a single software system and this system fails, then the public
administration is incapacitated.

6 Changes of
software systems
Source: [60]

Analogous to criterion 2, this criterion computes the number of changes with regard to the IT systems used in a group’s activities. A
change in software systems indicates that one system hands over a case to another system, so a low value for this criterion is
desirable since exchanges and hand-overs between internal software systems do not create value for citizens and companies.

7 IT support
Source: [64]

Since public administrations are encouraged to provide services electronically [66], this criterion counts how many of a group’s
activities have at least one assigned IT system. If this criterion has a high value, then many activities are supported by at least one
software system.

8 External contacts
Source: [67]

Since laws define public administrations’ service portfolios, citizens can be forced to engage with public administrations, leading to
displeasure when citizens engage with them [68]. To minimize the involvement of external participants like citizens and decrease
citizens’ discomfort, this criterion counts how many activities involve an external stakeholder, which is analogous to criterion 7.

9 External
participants
Source: [59]

Analogous to criterion 1, this criterion counts the number of external stakeholders of a group’s activities. Many services in public
administrations, such as plan-approval procedures, have many participants. Therefore, a higher value can be negative since many
external participants must be coordinated, but it can also be positive since the expertise of many external participants complements
the public administration’s expertise.

10 Legal foundations
Source: [58]

The services of public administrations are defined and restricted by legal foundations [20]. Performing as many legally necessary
activities as possible can be a quality criterion since activities that have no legal foundation could be avoidable. For this purpose, this
criterion counts how many activities have at least one assigned legal regulation, which is analogous to criterion 7.

11 Legally
unnecessary steps
Source: [58]

Since performing as many legally necessary activities as possible can be a quality criterion, this criterion counts how many activities
have no legal regulation, which is analogous to criterion 7. However, additional steps might enhance service satisfaction, such as by
informing citizens about the status of a government service instance.

12 Media changes
Source: [69]

A media change is a typical weakness of a process [70]. A low value for this criterion is desirable since changes between media, such
as a transfer from paper to an electronic medium, rarely create value for citizens and companies and should be avoided. This
criterion counts how many changes between paper and electronic processing occur, which is analogous to criterion 7.

13 Electronic
processing
Source: [58]

Public administrations are encouraged to provide services electronically [66], as doing so increases internal efficiency. This criterion
counts how many activities process a data object using an IT system.

14 Paper-based
processing
Source: [58]

Since public administrations are encouraged to provide services electronically, this criterion determines the degree of non-digitization
by counting how many activities process a data object without an IT system.

15 Cost
Source: [71]

Since public administrations should use their resources efficiently [72], this criterion adds up the cost of a group’s activities.

16 Lead time
Source: [73]

As public administrations should use their resources efficiently, this criterion adds up the lead times of a group’s activities.

17 Processing steps
Source: [60]

Since a small number of activities may indicate a short process, this criterion adds the number of activities in a group.

18 Absolute
frequency
Source: [34]

Since best practices can be practices that have been approved by many organizations, this criterion detects common practices. For
each of a group’s activities, it calculates the frequency of occurrences in the source models and returns the average frequency value.

19 Connectivity
Source: [74]

In general, groups do not have to be connected, but criteria such as criterion 2 are meaningful only if a group is a connected
subgraph and is not widely spread across the model. In addition, the final reference model must be a connected graph. Therefore,
this criterion determines whether the group is a connected subgraph or not.

74 H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87

The function Order creates a preordered set for groups based on the user’s preferences specified in critu. critu = ((c1, o1) , . . . ,

(cl, ol) , . . . , (cn, on)) represents the selection of ranking criteria by the user: cl:G → R is the function of a ranking criterion (cf. Ap-
pendix B), and ol ∈ {0, 1} indicates whether the groups are to be ordered ascendingly (1) or descendingly (0) according to the criterion.
Since groups may need to be ordered descendingly but we always sort ascendingly, we adapt critu as
crit∗u .

For this purpose, we define an adapted function of a ranking criterion c∗

l : G × {0, 1} → R as follows:

c∗

l (gr, ol) =

{
cl (gr) if ol = 1
−cl (gr) if ol = 0

This function changes the groups’ values for the ranking criteria if we need to sort descendingly. In this case, we multiply all values
by −1 so all groups can be ordered ascendingly.

Order
(
G, crit∗u

)
= (G,≲) with crit∗u = (c∗

1 , c
∗

2 , . . . , c
∗
n) orders lexicographically and returns a preordered set with a total preorder ≲

for G as follows [75]:

(c∗

1 (gr1, o1) , c∗

2 (gr1, o2) , . . . , c∗
n (gr1, on))

≲ (c∗

1 (gr2, o1) , c∗

2 (gr2, o2) , . . . , c∗
n (gr2, on))

gr1 precedes gr2 in the preordered set if

:⇔ (c∗

1 (gr1, o1) , c∗

2 (gr1, o2) , . . . , c∗
n (gr1, on))

= (c∗

1 (gr2, o1) , c∗

2 (gr2, o2) , . . . , c∗
n (gr2, on))

their values for all ranking criteria are equal,

or (c∗

1 (gr1, o1) < c∗

1 (gr2, o1)) or gr1 has a lower value for the first criterion,
or (c∗

1 (gr1, o1) = c∗

1 (gr2, o1) and c∗

2 (gr1, o2) < c∗

2 (gr2, o2)) or the groups’ first values are equal and gr1 has a lower value for
the second criterion,

.
or (c∗

1 (gr1, o1) = c∗

1 (gr2, o1) , . . . , c∗

n−1 (gr1, on−1) =

c∗

n−1 (gr2, on−1) and c∗
n (gr1, on) < c∗

n (gr2, on))
or the groups’ values are equal for all criteria except the last,
where gr1 has a lower value.

with gr1, gr2 ∈ G.

The function Filter(G, v) filters the set of groups G by returning the set of all source models’ groups that have the same value v for
the grouping property in common; for instance, the groups’ activities all process the data object (the grouping property) ‘‘Application’’
(the value): Filter(G, v) = {gr1, gr2, . . . , gr|S| ∈ G|v = v1 = v2 = · · · = v|S|}.

Finally, since there is a separate evaluation for the groups based on the value for the grouping property, OrderBy integrates preordered
sets of Order into a single set:

OrderBy (G, critu) = {Order(Filter(G, v), crit∗u)} for all v ∈ Val ∈
⋃

Vi, 1 ≤ i ≤ |S|
An orderBy clause is obligatory in a RefPA query since the goal is to evaluate groups of model elements:

The keyword ORDER BY is the beginning of an orderBy clause. The user must mention at least one criterion and whether the groups
are to be ordered ascendingly or descendingly according to this criterion. Additional criteria can be added.

The following clauses are applied to the example in Fig. 2:

Since there are two data objects in the source models, the groups are separated into two parts. The first part consists of the
groups that deal with Data Object 1 (one group in model A and one group in model B), and the second part consists of the group
that deals with Data Object 2 (one group in model A). All groups are ranked ascendingly based on the processing steps, then ranked
ascendingly based on the organizational units, and finally ranked descendingly based on IT support. The second ranking is trivial since
it consists of only one group, and the groups in the first ranking both have four activities and one pool, so the third criterion determines
the order. The group of model B is ranked at the top since it has one activity with an IT system, and the group of model A has
none.

3.5.3. Marking of groups
After submitting a RefPA query with the constructs explained above, the query is executed, and the resulting ranking is presented

to the user. All groups that share the same value for the grouping property are ranked separately based on the ranking criteria. The
user can select a group that is marked to finally be transferred to the reference model. In most cases, the group the user selects is the
one at the top for each value of the grouping property since it represents best practices according to the ranking criteria. If a query
result is empty, the user can specify a new query.

Formally, the user selects a group gr = (v,mi, Agr) from the results to be transferred to the reference model:

H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87 75

(1) ∀am ∈ Am such that ∃as ∈ (Agr ∩ Set(s_n(am))):
m_n(am):= 1

All activities of the merged model that have an activity in their
set of source nodes that belongs to the selected group are
marked.

(2) ∀bm1 ∈ Bm such that ∃ (nm1, bm1) , (bm1, nm2) ∈ Fm For all gateways that directly connect two certain nodes of the
merged model

and ∀bm1, . . . , bmk ∈ Bm such that
∃ (nm1, bm1) , (bm1, bm2) , . . . , (bmk−1, bmk) ,

(bmk, nm2) ∈ Fm

For all gateways that connect two certain nodes via a sequence
of gateways (k denotes the length of the sequence)

with (ns1 ∈ Set(s_n(nm1))) ∧ (ns2 ∈ Set(s_n(nm2))) and
• ns1, ns2 ∈ Agr These two nodes are either activities of the selected group,
• or (ns1 ∈ Agr) ∧ (m_n(nm2) = 1) or the first node belongs to the group and the second node has

already been marked,
• or (ns2 ∈ Agr) ∧ (m_n(nm1) = 1): or the second node belongs to the group and the first node has

already been marked:
m_n (bm1) := 1
. . .
m_n (bmk) := 1

Mark such gateways

(3) ∀fm = (nm1, nm2) ∈ Fm with
(ns1 ∈ Set(s_n(nm1))) ∧ (ns2 ∈ Set(s_n(nm2))) and

For all edges of the merged model, where

• (ns1 ∈ Agr) ∧ (m_n(nm2) = 1) the first node belongs to the group and the second node has
been marked,

• or (ns2 ∈ Agr) ∧ (m_n(nm1) = 1) or the second node belongs to the group and the first node has
been marked,

• or nm1, nm2 ∈ {bm1, . . . , bmk} or both nodes are part of a sequence of gateways as stated in
2),

• or ((nm1 ∈ {bm1, . . . , bmk}) ∧ (m_n(nm2) = 1))
∨((nm2 ∈ {bm1, . . . , bmk}) ∧ (m_n(nm1) = 1)):

or the edge connects a gateway from 2) to a marked node:

m_e (fm) := 1 Mark such edges.

First, the merged activities of all activities of the selected
group are marked. Second, gateways are marked that connect
activities of the group to other activities of the group or to nodes
that have been marked before. The connection can be realized by
a single gateway or a sequence of gateways. Third, the equivalents
in the merged model of edges that connect nodes of the group
to each other or to already marked nodes or the equivalents in
the merged model of edges that connect gateways related to the
group to other nodes are marked.

3.6. Step 4: Assembling the reference model

In the course of the assembling the reference model mr , all
unmarked nodes and edges are removed from the merged model:

mr = (Ar , Br , Fr , Pr , Vr , propsr) with
Ar = {am ∈ Am|m_n(am) = 1},
Br = {bm ∈ Bm|m_n(bm) = 1},
Fr = {fm ∈ Fm|m_e (fm) = 1},
Pr =

⋃
Pi and

Vr =
⋃

Vi
For each merged activity am, the user selects an atomic activity

au ∈ Set(s_n (am)) from one of the source models mi that provides
the property values for the activity in the reference model:

∀p ∈ Pi: propsr (am, p) := propsi (au, p) with au
∈ (Set(s_n(am)) ∩ Ai) and am ∈ (Am ∩ Ar)

By default, the atomic activity that occurs first in one of the
selected groups provides the property values for a merged activity
since this activity is part of a best practice. However, if an activity
has an equivalent in all source models but is not part of any
selected group, then the user must make a choice. We decided to
not take the union of the property values of all source activities
since doing so would not be meaningful for properties with text,
such as captions, or quantitative attributes, such as time.

Finally, the user must ensure that the model is syntactically
correct and a connected graph. For example, the user can re-
move trivial gateways with only one ingoing and one outgoing
edge. For this purpose, the user can apply the functionalities of
existing process modeling tools or mechanisms that have been
proposed in the literature [18,34] and modify the reference model
if necessary.

4. Demonstration

We demonstrate the applicability and functionality of the
entire method using an example based on two artificial BPMN
process models, as visualized in Fig. 3. Fig. 4 provides the initial
merged model (step 0) that was created manually. If we do not
mention a property in one of the source model’s activities, then
the property’s value for this activity is null. In the merged model,
the sets of referenced source elements are mentioned within
activity nodes and to the right of edges. For instance, the first
node of the merged model refers to the atomic nodes An1 and
Bn1. Since there are two source models and the merged node
refers to two atomic nodes, RefPA automatically recognizes the
first node of the merged model as a common element. Fig. 4
illustrates the common parts (step 1).

During steps 2 and 3, the user exemplarily submits the follow-
ing query first:

The activities are grouped according to their processed data
objects in the GROUP BY clause since government service delivery
is characterized by the processing of documents [76]. We assume
that the goal is to increase process efficiency and improve the
degree of digitization [1,77], so the ORDER BY clause orders the

76 H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87

Fig. 3. Two exemplary process models A and B.

Table 4
Result of the first query.
Grouping Evaluation

Data object Model Lead time Paper-based processing

Application B 6 min 0
A 11 min 1

groups according to lead time and paper-based processing (cf. Ap-
pendix B) to identify the fastest process segments and reduce the
volume of paper documents in the process. The HAVING clause
of this exemplary query limits the number of media changes so
the process remains electronic as often as possible. The WHERE
clause ensures that the same role processes all activities and does
not have to hand work over to another role. As the first query is
formulated to deal with the start of the process, we formulate an
exemplary CONTAINING clause to ensure that at least one activity
receives an application.

The automatically generated result of the query, shown in
Table 4, is based on four data objects in the source models: ‘‘Ap-
plication’’, ‘‘Missing Documents’’, ‘‘Notification’’, and ‘‘Fee Notice’’.
Since the groups regarding ‘‘Missing Documents’’, ‘‘Notification’’,
and ‘‘Fee Notice’’ do not contain an activity with the caption
‘‘Receive Application’’ and do not fulfill the CONTAINING clause,
the only ranking is regarding ‘‘Application’’. The group of model B
is superior to the group of model A, so the user selects this group
and marks the node Bn2 and the edge Be1. The merged model at
this stage is visualized in Fig. 4.

To analyze the remaining parts of the models, the user re-
moves the CONTAINING clause from the query since the user is
now interested not only in the source models’ start but in all parts
of the models:

Table 5
Result of the second query.
Grouping Evaluation

Data object Model Lead time Paper-based processing

Application B 6 min 0
A 11 min 1

Fee notice B 5 min 1

Missing documents B 1 min 0

Notification A 3 min 0
B 7 min 1

The second query’s result is presented in Table 5. The overview
contains a ranking for the groups regarding all data objects pro-
cessed in the source models. Since the user dealt with ‘‘Applica-
tion’’ in the first query, s/he now focuses on ‘‘Notification’’. The
group of model A is better than the group of model B since it
is faster and processes fewer paper data objects. The user selects
the group of model A regarding ‘‘Notification’’ in this example and
marks the edge Ae4. The current merged model is visualized in
Fig. 5.

An immediate rejection of an application that is due only to
missing documents is not service-oriented, so the user decides
that a public administration should inform the citizen about
missing documents and give the citizen the opportunity to submit
documents later. As processing missing documents is not relevant
to all cases but only to exceptional cases, the user forms groups
according to probability since the property probability indicates
exceptional activities. This rationale leads to the following query:

Table 6 displays the automatically computed result. An in-
spection of the source models reveals that all activities with a
probability of 20 percent deal with the processing of missing

H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87 77

Fig. 4. The merged model initially (left) and after the user’s first selection (right).

Table 6
Result of the third query.
Grouping Evaluation

Probability Model Lead time Paper-based processing

10% B 1 min 0
20% B 3 min 0

documents. Since there is only one group for the probability 20
percent, the user selects this group of source model B and marks
Bn3, Bn4, two gateways, and Be2, Be3, Be4, Be5, Be6, and Be7.
The merged model at this stage is presented in Fig. 5.

The user does not formulate an additional query. The re-
maining data object, ‘‘Fee Notice’’, is not rated as relevant to
the reference model since, in this example, the marked parts of
source model A can include fee information in the notification. A
separated data object for fee information is not necessary.

In the course of the assembling the reference model (step 4),
the non-marked elements are automatically removed from the
merged model (An2, Bn7, Bn8, Ae1, Ae2, Be9, Be10, Be11,
Be12, Be13, Be14, two gateways). The user chooses the activi-
ties of the selected groups from steps 2 and 3 as providers of the
reference model’s activities’ property values (Bn1, Bn2, Bn3,
Bn4, Bn5, An4, An5). Since the reference model is syntactically
correct and connected, the user performs no manual adaptations.
Fig. 6 visualizes the resulting reference model.

5. Evaluation

This section reports on the evaluation of RefPA that we per-
formed in a workshop using a software prototype. As a prelimi-
nary evaluation, we presented the main concepts at the European
Conference on Information Systems 2016 and received valuable
feedback that we used to refine RefPA’s concepts and that we
incorporated into the prototype.

78 H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87

Fig. 5. The merged model after the user’s second (left) and third (right) selections.

5.1. Implementation

We created a software prototype as a proof-of-concept and to
evaluate RefPA. The focus of the implementation was on the algo-
rithmic and procedural aspects of RefPA. The user interface was
kept minimal to ensure that users could evaluate the method’s
usefulness, rather than the interface design. The RefPA prototype
was implemented as a standalone Java desktop application with a
Swing GUI. Choosing this powerful, well-understood, and popular

programming language [78–80] was beneficial with regard to
such aspects as platform independency, availability of libraries,
flexibility, and availability of a mature development ecosystem.

After opening the prototype, the user is located in a view that
allows him or her to import either ‘‘raw’’ process models or a
previously assembled merged model. If only raw process models
are presented, the tool has an integrated plug-in that enables the
user to create the required merged model manually (step 0 in

H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87 79

Fig. 6. Resulting reference model.

RefPA), supported by similarity values between the activities of
the process models to be merged [81].

Once a merged model is loaded or created, the user can switch
to the ‘‘Grouping and Evaluation’’ view where, consistent with
RefPA’s step 1, all common nodes in the merged model are auto-
matically identified and marked in dark gray, while all common
edges are displayed as solid arrows (see, e.g., bullet C in Fig. 8).
All remaining elements are visualized in light gray or dotted
arrows. Even though the RefPA query language in steps 2 and 3 is
inspired by SQL, we decided against writing queries in the format
suggested in Sections 3.4 and 3.5 (for examples, see Section 4).
While the standard SQL syntax should be familiar to anyone with
an IT background, it is likely to be difficult for people with other
backgrounds. To ensure that these steps are accessible to all,
RefPA queries that follow the syntax proposed in Sections 3.4 and
3.5 can be created using dropdowns and add/remove buttons (see
Fig. 7). This approach is feasible since most of the non-terminals
in the RefPA syntax are directly replaceable by elements from a
fixed set of terminals, which are easy to represent as a dropdown
list.

Fig. 7 shows an example of the second query stated in Sec-
tion 4. In the first dropdown for GROUP BY, the user can select
the property by which the activities should be grouped, which
is ‘‘Data Object’’ in this example. Since the query uses no CON-
TAINING clause, no respective statement is added. However, for
WHERE, a condition is added to restrict the result set to activities
that are executed by a person whose ‘‘Role’’ is equal (=) to ‘‘Case
Officer’’. Next, a HAVING statement is added with the ‘‘+’’ button.
From the list of criteria, ‘‘Media Changes’’ is selected along with
the operator ‘‘<=’’ and the manually added ‘‘2’’ as the target value.
The retrieved results should be ordered according to ‘‘Lead Time’’
and ‘‘Paper-based Processing’’, both in ascending order, so ‘‘Lead
Time’’ is selected from the dropdown of the first, mandatory
ORDER BY statement. Via the ‘‘+’’, a second ORDER BY statement is
added, where ‘‘Paper-based Processing’’ can be selected; ‘‘ASC’’ is
the default order, so it does not need adjustment. Once the user
is satisfied with the query, results can be obtained by clicking the
‘‘Show Results’’ button at the bottom of the query panel.

Query results are subsequently listed in the view, ordered
by the specified ranking criteria (bullet A in Fig. 8). By clicking
on a group in the overview, the affected nodes and edges are
highlighted in orange in the merged model (bullet C). Based on
the quantitative metrics and the visual impression, the user can

Fig. 7. Prototype—query editor for grouping and evaluation (steps 2 and 3).

decide which group represents the ‘‘best practice’’ to be included
in the reference model. If more information about an activity is
needed, the user can select an activity (bullet C) and look up the
associated property values (bullet D). Since the merged model
consists of merged activities, each of the merged activities’ source
activities can be selected via a dropdown for closer inspection
(bullet D). If the user needs more information, s/he can access
the source models by going back to the ‘‘Import’’ view. Once the
user makes a decision, s/he adds the selected group by clicking
the ‘‘Add Group to Reference Model’’ button (bullet B). Two other
buttons can be used to switch between the merged model view
(Fig. 8) and a visualization of the current version of the reference
model that contains only marked elements (Fig. 9).

80 H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87

Fig. 8. Prototype—results of grouping and evaluation (steps 2 and 3).

Fig. 9. Prototype—reference model view: Unconnected (left) and connected (right) (step 4).

When the user presses the button ‘‘Show Reference Model’’
and the prototype presents the current reference model, the
prototype warns the user if the model is not connected (step 4
in RefPA), as shown in Fig. 9. Here, the activity ‘‘Send Answer’’
(Mn2) has not yet been connected to the rest of the reference
model. While unconnected items may be easily recognizable in
demonstration cases like that presented here, this feature en-
sures that, even during the treatment of complex cases, the user
can obtain a connected and usable process model. In the case
presented here, the merged model offers two possible pathways
to connect Mn2 to the other nodes: one from ‘‘Create Answer’’
(Mn1) directly to ‘‘Send Answer’’ (Mn2) and one via ‘‘Print Answer’’
(Mn6). Once the user adds a group to establish one of those two
options, the warning disappears and a connected reference model
is presented (Fig. 9). For manual adaptions, the buttons in Fig. 8

(bullet E) allow the user to add or remove individual nodes and
edges.

5.2. Workshop

5.2.1. Research design
To evaluate RefPA’s usefulness, we applied the prototype in

a workshop with nine domain and modeling experts. The par-
ticipants’ years of experience averaged 4.94 years in projects
in public administrations and 5.17 years in projects covering
conceptual modeling. We provided the participants with three
real-world process models that represented the same process in
three public administrations and contained 12, 15, and 24 activ-
ities. We performed a terminological standardization beforehand
so the participants could focus on constructing the reference
model. Two researchers supervised the workshop.

H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87 81

In the course of the workshop, we compared RefPA to a
manual reference model construction but not to another semi-
automatic inductive method since no similar method was avail-
able (cf. Section 2.2). All participants performed the manual and
RefPA-based reference model construction so they could compare
and evaluate the resulting reference models and methods them-
selves. We did not split the participants into two groups, with one
group creating reference models manually and one group creating
reference models with RefPA. Since a modeler creates a model
for a certain purpose, the quality of a model is highly subjective.
Therefore, it is not possible to compare the reference model that
was created manually to the RefPA-based reference model and
objectively decide which model’s best practices are superior.

We divided the workshop into three parts: In the first part, the
participants created a reference model manually on paper after
receiving printed copies of the source models. Participants were
given the goal of creating a generalized reference model for best
practices and were not limited to a certain scenario.

After a short introduction to the functionality of RefPA and
the use of the prototype, in the second part of the workshop
each participant created a reference model with the RefPA imple-
mentation. We prepared the computers beforehand by installing
RefPA and importing the terminologically standardized source
models. The participants started by manually mapping similar
activities to create the merged model and then used the query
constructs and the query results to add elements to the reference
model.

In the third part of the workshop, the participants completed
a questionnaire that contained two closed-ended questions that
asked for their experience, seven questions on a five-point Likert
scale about the usefulness and applicability of the RefPA method
and the query language, and three open-ended questions that
dealt with prerequisites and asked for improvement suggestions.
We provide the questionnaire in Appendix C.

5.2.2. Quantitative results
The results led to qualitative and quantitative insights. Table 7

presents an overview of the quantitative results regarding the
questionnaire’s questions on RefPA’s usefulness and applicability.
To account for the participants’ experiences, we weighted their
scores with their experiences when we calculated the means.

As Table 7 shows, the minimal weighted mean value of all
statements is 3.15, and the maximum mean value is 4.27 (1 refers
to ‘‘do not agree’’ and 5 refers to ‘‘fully agree’’). The lowest mean
values were in response to the statement that RefPA provides new
and valuable suggestions and the statement that users can apply
RefPA easily. The usefulness of the predefined steps received
the highest mean value. Four statements received the minimum
value of 1 and five statements received the maximum value of
5. The participants gave the highest minimum value of 3 to the
usefulness of RefPA’s predefined steps and to the likelihood of
reusing RefPA by reference modelers. All statements received a
maximum value of at least 4. The participants’ responses led to a
median of 4 for the majority of statements. The highest median is
4 and the lowest median is 2, where the latter belongs to RefPA’s
ease of use.

The results reveal that RefPA provides valuable support in
constructing a reference model inductively. On average, all state-
ments received more approval than rejection since all weighted
mean values were above or equal to 3.15. Some negative out-
liers appeared, as indicated by their minimum values, but the
median values reveal that those outliers had little impact on the
participants’ overall perceptions. In particular, the participants
saw RefPA’s predefined steps as providing valuable guidance to
the construction process, as they perceived first detecting com-
mon parts in the source models with a merged model and then

analyzing non-common parts with the query language to be a
reasonable approach.

Although they rated RefPA as useful method, the participants
sawmore value for reference modelers in general than for process
managers in public administrations in particular. Comparisons
between RefPA’s general applicability and its specific applicability
in public administrations support this impression (questions #3
and #4, #6 and #7). The participants’ qualitative feedback indi-
cated that this view is due primarily to public administrations’
limited progress in business process management by means of
knowledge-sharing between organizations.

Although the semi-automatic inductive reference model con-
struction is relevant to public administrations, it is far ahead
of their current agendas. In general, though, the participants
confirmed the usefulness of the RefPA method and agreed that
public administrations would benefit from its application.

5.2.3. Qualitative results
A prerequisite for the successful application of RefPA is a

software implementation with a high level of usability. The state-
ment regarding RefPA’s ease of use is the only statement of the
questionnaire with a median that indicates a rejection from the
participants, so in the participants’ view, the usability of the cur-
rent version of our prototype can be improved. In their answers
to the open-ended questions of the questionnaire’s third section,
they contributed guidelines for an implementation of RefPA:

• An implementation should not only visualize the merged
model after the user selects a group and marks the corre-
sponding elements but should also illustrate potential con-
sequences. The user should be aware of the effect of doing
so before adding a group to the reference model, so the tool
should be able to highlight potential groups in the merged
model.

• Domain experts have difficulties understanding and using
the query language, as it requires some prior IT knowledge.
Although the current version of the prototype provides pre-
defined query structures and does not force the user to
define a query from scratch, it still relies on formal syntax.
Since not only IT experts but also process managers in public
administration should be able to use RefPA, an implementa-
tion should provide a graphic way to assemble queries that
does not rely on formal specifications.

• In the current version, the user must understand the source
models in detail (e.g., which properties are available to
be referred in a query) and perform many manual steps.
However, to make RefPA widely applicable, knowledge of
the scenario should be sufficient. The tool should predefine
typical default criteria and sequences of queries. It should
ask the user questions to specify the reference model’s sce-
nario and goal and then suggest queries to the user that fit
the scenario.

• To avoid requiring the user to know RefPA in detail and to
accelerate the construction process, the tool should auto-
matically add groups to the reference model that are ranked
at the top instead of letting the user select one of the groups.
Thus, the user would not have to inspect the groups that
s/he could add to the reference model but would check
a final reference model and adapt it if necessary (which
must be done in step 4 anyway). This procedure sounds
reasonable since the user expresses his or her preferences
in the query, making subsequent selection of the best group
from the overview unnecessary.

• The participants tended to take a node-centric view instead
of a group-centric view, so they evaluated nodes individ-
ually in the manual construction, while RefPA compares

82 H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87

Table 7
Results of the questionnaire: RefPA’s usefulness and applicability.
Statement Weighted mean Min Max Median

1 RefPA, with its criteria and query constructs, provided new and valuable suggestions for
the resulting reference model.

3.15 1 4 3

2 RefPA’s predefined steps gave a reasonable structure to the construction process. 4.27 3 5 4
3 RefPA is useful in constructing the reference model inductively. 4.03 2 5 4
4 RefPA is useful in public administrations’ process management. 3.67 1 5 4
5 Users can apply RefPA easily. 3.18 1 4 2
6 As a reference modeler, I would use RefPA again. 4.04 3 5 4
7 As a process manager in a public administration, I would use RefPA again. 3.45 1 5 3

groups. In addition, the merged models in our examples
became rapidly complex because of an increasing number
of edges. For these two reasons, an implementation of RefPA
could mark only nodes and no edges based on queries and
let the user create the edges manually. A tool should have
a modeling component that allows the user to modify the
reference model.

Consequently, the evaluation revealed that RefPA is useful. RefPA’s
criteria and query constructs, in combination with the predefined
steps, are suitable means with which to detect best practices
in process models inductively and represent them in reference
models. The participants indicated that RefPA is beneficial for
reference modelers and process managers in public administra-
tions. The prototype can be improved based on the participants’
suggestions to increase its application.

6. Discussion and outlook

This paper contributes to research and practice an inductive
method to develop semi-automatically reference process models
that represent best practices. The method requires the integration
of source models into a merged model and transfers selected
elements from the merged model to the reference model (FRQ3).
RefPA segments the source models by differentiating between
common and non-common elements and providing three query
constructs to form groups (FRQ1). It offers two SQL-like query
constructs to evaluate such groups (FRQ2). RefPA is applicable
to all graph-based process modeling languages (FRQ4). The main
component of RefPA is a query language that allows users to
form comparable segments in process models and evaluate these
segments according to best-practice criteria. The list of process-
related best-practice criteria in public administrations and the
prototypical implementation of RefPA are contributions on their
own.

Inductive methods usually return descriptive reference mod-
els [18], but the reference models that result from RefPA are both
descriptive and prescriptive since they represent best practices
from a limited set of process models. Such reference models
are recommendations to align processes with those of the best
organizations. However, since RefPA is based on a limited set of
process models, better solutions may be available that are not
included in the process models, so ‘‘best’’ is relative to the set
of source models from which RefPA detects the best solutions.
Since RefPA describes (descriptive) the best (prescriptive) avail-
able solutions in the source models, a user cannot assume that its
suggestions are global best practices. In addition, the definition
of best practices always depends on the user and the underlying
goal: while some practices are best in some scenarios, they might
be inferior to other practices in other scenarios, so the user should
evaluate RefPA’s results for best practices based on his or her
knowledge and preferences. In short, RefPA returns suggestions
for relative and perceived best practices.

Researchers can transfer RefPA’s concepts to other perspec-
tives of an organization, such as data models and organizational

charts, but researchers must develop a different set of best-
practice criteria for each type of model. For example, criteria
for organizational charts could include the number of organi-
zational units and the number of hierarchy levels. Transfer of
RefPA to other sectors, such as retail or production companies, is
promising and also requires adapting the ranking criteria. Since
reference models can be theoretical contributions [10,82], re-
searchers can apply RefPA to create a set of reference models that
covers various functional areas of public administrations.

In practice, RefPA can facilitate knowledge-sharing between
public administrations when practitioners apply RefPA in refer-
ence modeling. For example, an application scenario for a process
manager is harmonizing the processes of subsidiaries to decrease
time and cost. Several public administrations can apply RefPA
to develop a reference process when they want to implement
a common software system. Public administrations can also use
RefPA in other kinds of scenarios, such as when a single public ad-
ministration wants to introduce a new software system and must
choose between two systems. It can construct two to-be process
models, one with the first software system and one with the
second and compare the two using RefPA to detect segments in
which the first or the second system performs best. The segments
that are most important can determine the decision.

RefPA is subject to some limitations and prerequisites. To
apply RefPA, a user must fulfill the following prerequisites:

• The source models must be created with the same business
process modeling language.

• The source models must have adequate information. RefPA
uses property values to form and evaluate groups, so the
source models must contain appropriate property values for
their activities, such as roles and data objects. If only a few
activities have values for some properties, process managers
cannot apply RefPA meaningfully.

• As the source models come from different institutions, ter-
minology may need to be standardized before RefPA is ap-
plied (e.g., [83–87]). For instance, different terms for prop-
erty values cannot refer to the same entity (e.g., ‘‘invoice’’
and ‘‘bill’’).

• The semi-automatic comparison of process models requires
common modeling conventions to be in place so modeling is
performed consistently for all source models. For instance,
if modeling of legal regulations is relevant to one source
model, and the creator of another source model has not paid
attention to modeling legal regulations, then these source
models are not comparable (cf. criterion 10 in Table 3).

• An adequate method to create the inputted merged model
must be selected. Users can perform this preprocessing step
manually or rely on methods proposed in the literature,
such as those for merging process models (e.g., [34,88–92])
and matching process models (e.g., [93–99]). The selected
merging algorithm should rely on structural integration, not
behavioral integration, since the latter does not necessarily
reproduce edges that existed before.

H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87 83

• A user should have access to state-of-the-art process model-
ing tools that provide functionalities for the syntactic check
and clean-up of process models or mechanisms proposed
in the literature (e.g., [18,34]) to ensure that the result is
a proper process model.

Ensuring that all prerequisites are met may be time consuming,
so users must decide in each case whether it is worth the effort
to make RefPA applicable instead of selecting another method for
constructing a reference model.

In addition, the control flow and the activities’ property values
may not always cause the values for the ranking criteria, as
factors like the complexities of application forms between pub-
lic administrations may influence and distort values for criteria
like ‘‘Lead Time’’. Moreover, RefPA does not necessarily detect
general best-practice patterns, such as that parallel execution is
always better than sequential execution. These patterns must be
reflected in the groups’ values for the ranking criteria so RefPA
can identify them. In addition, it may not always be meaningful to
integrate process segments from different public administrations.
However, RefPA does not create a reference model in a fully
automatic way but supports the user during the construction
process. In any case, the user should reflect critically on the
appropriateness of RefPA’s results and apply his or her knowledge
to formulate meaningful queries and interpret the results by, for
example, identifying relationships between activities to deter-
mine whether the omission of an activity requires other activities
to be in place.

Our research makes suggestions for future work. While the
recognition of well-known SQL constructs and clear guidance
with separated steps and many user interaction points support
RefPA’s applicability (NFRQ1), the evaluation results reveal that
RefPA does not meet NFRQ1, which is to be addressed in future
research. Improved implementations of RefPA should consider
our guidelines (see Section 5.2.3) to increase usability and ensure
that many process managers can apply the tool in practice. Once
RefPA is applied in practice, researchers can perform a more ex-
tensive empirical study with a more participants than were part
of our evaluation to confirm our results. Researchers can extend
RefPA by incorporating new language constructs and operators
like LIKE, NOT, and wildcards, which would increase the query
language’s power and allow users to formulate queries that are
more sophisticated than current queries.

Methods for the inductive construction of a reference model
are especially relevant to public administrations. This paper pro-
poses RefPA as the first semi-automatic inductive method by
which to detect and represent best practices in process models.
The results from the evaluation reveal that RefPA is a suitable
tool for the construction of reference models in public adminis-
trations.

Acknowledgment

This article is a revision of the paper ‘‘Semi-Automatic Induc-
tive Derivation of Reference Process Models that Represent Best
Practices in Public Administrations’’ that was presented at the
European Conference on Information Systems 2016.

Conflict of interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix A. Symbols

a: An activity
Ai: A finite, non-empty set of activities of model mi

asc: An atomic Contains statement
ash: An atomic Having statement
b: A gateway
Bi: A finite set of gateways of model mi
cl: The function of a ranking criterion
c∗

l : The adapted function of a ranking criterion
critu: A tuple of ranking criteria selected by the user with their

functions
crit∗u : A tuple of ranking criteria selected by the user with their

adapted functions
csc: A combined Contains statement that can consist of atomic

and other combined statements
csh: A combined Having statement that can consist of atomic

and other combined statements
cu: The function of a ranking criterion selected by the user
f : A flow relationship (i.e., an edge)
Fi: The set of flow relationships of model mi (i.e., edges)
G: The set of all groups that are to be evaluated
gr: A group of activities
k: The length of a sequence of gateways

mi: A source model
mm: The merged model
mr : The reference model

m_e: A function that indicates whether an edge of the merged
model has been marked to be transferred to the reference
model (1) or not (0)

m_n: A function that indicates whether a node of the merged
model has been marked to be transferred to the reference
model (1) or not (0)

n: A node (i.e., an activity or gateway)
Ni: The set of nodes of model mi (i.e., activities and gateways)

oacu: An operator of an atomic Containing statement specified
by the user

oahu: An operator of an atomic Having statement specified by
the user

occu: An operator of a combined Containing statement specified
by the user

ol:: A variable that indicates whether the groups are to be
ordered ascendingly (1) or descendingly (0) according to
the ranking criterion

p: A property
Pi: A finite, non-empty set of properties of model mi

propsi: A mapping that assigns a property value to a pair of one
activity and one property in model mi

pu: A property selected by the user
S: The set of all source models

scu: A Containing statement specified by the user
shu: A Having statement specified by the user
sscu: A set of Containing sub-statements specified by the user
sshu: A set of Having sub-statements specified by the user
sub: A sub-statement of a combined statement
s_e: A function that refers to the sources of an edge of the

merged model
s_n: A function that refers to the sources of a node of the

merged model
v: A value

Val: A property value
Vi: A finite, non-empty set of all property values that occur

in model mi
vu: A value specified by the user
≲: A total preorder

Appendix B. Calculations of ranking criteria

See Table B.1.

84 H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87

Table B.1
Calculations of ranking criteria.
Criterion Calculation

1 Documents |
⋃

a∈Agr propsi (a,DataObject) |

2 Change of documents Algorithmic procedure:
Open:= {(a1, a2) ∈ Fi|a1, a2 ∈ Agr }

score:= 0
For each f ∈ Open:
If (|propsi (a1,DataObject) |≥ 1) Then
If (|propsi (a2,DataObject) |≥ 1) Then

If (|propsi (a1,DataObject) ∪ propsi (a2,DataObject) |= 0) Then
score:= score + 1

Else: For each a3 ∈ Agr with (a2, a3) ∈ Fi:
Open:= Open ∪ {(a1, a3)}

Return score

3 Organizational units |
⋃

a∈Agr propsi (a, Role) |

4 Change of organizational units Algorithmic procedure:
Open:= {(a1, a2) ∈ Fi|a1, a2 ∈ Agr }

score:= 0
For each f ∈ Open:
If (|propsi (a1, Role) |≥ 1) Then
If (|propsi (a2, Role) |≥ 1) Then

If (|propsi (a1, Role) ∪ propsi (a2, Role) |= 0) Then
score:= score + 1

Else: For each a3 ∈ Agr with (a2, a3) ∈ Fi:
Open := Open ∪ {(a1, a3)}

Return score

5 Software systems |
⋃

a∈Agr propsi (a, ITSystem) |

6 Changes of software systems Algorithmic procedure:
Open:= {(a1, a2) ∈ Fi|a1, a2 ∈ Agr }

score:= 0
For each f ∈ Open:
If (|propsi (a1, ITSystem) |≥ 1) Then
If (|propsi (a2, ITSystem) |≥ 1) Then

If (|propsi (a1, ITSystem) ∪ propsi (a2, ITSystem) |= 0) Then
score:= score + 1

Else: For each a3 ∈ Agr with (a2, a3) ∈ Fi:
Open := Open ∪ {(a1, a3)}

Return score

7 IT support |
{
a ∈ Agr ||propsi (a, ITSystem)| ≥ 1

}
|

8 External contacts |
{
a ∈ Agr ||propsi (a, ExternalStakeholder)| ≥ 1

}
|

9 External participants |
⋃

a∈Agr propsi (a, ExternalStakeholder) |

10 Legal foundations |
{
a ∈ Agr ||propsi (a, LegalRegulation)| ≥ 1

}
|

11 Legally unnecessary steps |
{
a ∈ Agr ||propsi (a, LegalRegulation)| = 0

}
|

12 Media changes Algorithmic procedure:
Open:= {(a1, a2) ∈ Fi|a1, a2 ∈ Agr }

score:= 0
For each f ∈ Open:
If (((|propsi (a1, ITSystem) |≥ 1) AND (|propsi (a2, ITSystem)| = 0)) OR
((|propsi (a1, ITSystem)| = 0) AND (|propsi (a2, ITSystem)| ≥ 1))) Then

score:= score + 1
Return score

13 Electronic processing Algorithmic procedure:
score:= 0
For each a ∈ Agr :
If ((|propsi (a,DataObject) |≥ 1) AND (|propsi (a, ITSystem)| ≥ 1)) Then

score:= score + 1
Return score

14 Paper-based processing Algorithmic procedure:
score:= 0
For each a ∈ Agr :
If ((|propsi (a,DataObject) |≥ 1) AND (|propsi (a, ITSystem)| = 0)) Then

score:= score + 1
Return score

15 Cost
∑

a∈Agr v ∈ propsi(a, Cost)

16 Lead time
∑

a∈Agr v ∈ propsi(a, Time)

17 Processing steps |Agr |

18 Absolute frequency 1
|Agr |

·
∑

a∈Agr |
⋃

am∈Am |a∈Set(s_n(am)) Set (s_n (am)) |

19 Connectivity Checks whether the group is connected (return 1) or not (return 0) for instance by using depth-first search

H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87 85

Appendix C. Questionnaire References

[1] C. Houy, P. Fettke, P. Loos, Empirical research in business process manage-
ment – analysis of an emerging field of research, Bus. Process. Manag. J.
16 (2010) 619–661.

[2] B. Niehaves, R. Plattfaut, J. Becker, Business process management capabil-
ities in local governments: A multi-method study, Gov. Inf. Q. 30 (2013)
217–225.

[3] M. Rosemann, Application reference models and building blocks for man-
agement and control, in: P. Bernus, L. Nemes, G. Schmidt (Eds.), Handb.
Enterp. Archit., Springer-Verlag, Berlin, Heidelberg, 2003, pp. 595–615.

[4] J. Becker, R. Knackstedt, Konstruktion und anwendung fachkonzeptioneller
referenzmodelle im data warehousing, in: W. Uhr, W. Esswein, E. Schoop
(Eds.), Wirtschaftsinformatik 2003/Band II Medien - Märkte - Mobilität,
Physica-Verlag, Heidelberg, 2003, pp. 415–434.

[5] P. Fettke, P. Loos, J. Zwicker, Business process reference models: Survey and
classification, in: C.J. Bussler, A. Haller (Eds.), Proc. BPM 2005 Int. Work.
BPI, BPD, ENEI, BPRM, WSCOBPM, BPS, Nancy, 2005, pp. 469–483.

[6] J. Becker, P. Delfmann, R. Knackstedt, Adaptive reference modeling: Inte-
grating configurative and generic adaptation techniques for information
models, in: J. Becker, P. Delfmann (Eds.), Ref. Model., Physica-Verlag HD,
Heidelberg, 2007, pp. 27–58.

[7] P. Fettke, P. Loos, Classification of reference models: a methodology and
its application, Inf. Syst. E-Bus. Manag. 1 (2003) 35–53.

[8] M. Rosemann, W.M.P. van der Aalst, A configurable reference modelling
language, Inf. Syst. 32 (2007) 1–23.

[9] O. Thomas, A.-W. Scheer, Tool support for the collaborative design of
reference models – A business engineering perspective, in: Proc. 39th
Hawaii Int. Conf. Syst. Sci., Kauai, 2006.

[10] J. vom Brocke, Referenzmodellierung: Gestaltung Und Verteilung Von
Konstruktionsprozessen, Logos Verlag, Berlin, 2003.

[11] L. Algermissen, P. Delfmann, B. Niehaves, Experiences in process-oriented
reorganisation through reference modelling in public administrations - The
case study Regio@KomM, in: Proc. 13th Eur. Conf. Inf. Syst., Regensburg,
2005.

[12] M. Karow, D. Pfeiffer, M. Räckers, Empirical-based construction of reference
models in public administrations, in: M. Bichler, T. Hess, H. Krcmar,
U. Lechner, F. Matthes, A. Picot, B. Speitkamp, P. Wolf (Eds.), Proc.
Multikonferenz Wirtschaftsinformatik 2008, Munich, 2008, pp. 1613–1624.

[13] L. Baacke, P. Rohner, R. Winter, Aggregation of reference process building
blocks to improve modeling in public administrations, in: A. Grönlund, H.J.
Scholl, M.A. Wimmer (Eds.), 6th Int. EGOV Conf. Proc. Ongoing Res. Proj.
Contrib. Work., Regensburg, 2007, pp. 149–156.

[14] J. Becker, R. Schütte, A reference model for retail enterprises, in: P. Fettke,
P. Loos (Eds.), Ref. Model. Bus. Syst. Anal., Idea Group Publishing, Hershey,
2007, pp. 182–205.

[15] J. Walter, P. Fettke, P. Loos, How to identify and design successful business
process models: An inductive method, in: J. Becker, M. Matzner (Eds.), Proc.
Rep. PropelleR 2012 Work., Moscow, 2012, pp. 89–96.

[16] J.-R. Rehse, P. Fettke, P. Loos, A graph-theoretic method for the inductive
development of reference process models, Softw. Syst. Model. 16 (2017)
833–873.

[17] A. Martens, P. Fettke, P. Loos, Inductive development of reference process
models based on factor analysis, in: O. Thomas, F. Teuteberg (Eds.), Proc.
12th Int. Conf. Wirtschaftsinformatik, Osnabrück, 2015, pp. 438–452.

[18] P. Ardalani, C. Houy, P. Fettke, P. Loos, Towards a Minimal cost of change
approach for inductive reference process model development, in: Proc. 21st
Eur. Conf. Inf. Syst., Utrecht, 2013.

[19] A. Sonntag, P. Fettke, P. Loos, Inductive reference modelling based on
simulated social collaboration, in: J.M. Leimeister, W. Brenner (Eds.),
Proc. 13th Int. Conf. Wirtschaftsinformatik, WI 2017, St.Gallen, 2017, pp.
701–715.

[20] P.C. Nutt, R.W. Backoff, Organizational publicness and its implications for
strategic management, J. Publ. Adm. Res. Theory 3 (1993) 209–231.

[21] L. Algermissen, M. Instinsky, J. Schwall, BPM as a strategic tool for
administrative modernization: The IMPROVE approach, in: J. Becker, M.
Matzner (Eds.), Proc. Rep. PropelleR 2012 Work., Moscow, 2012, pp. 51–56.

[22] R.-H. Eid-Sabbagh, M. Kunze, M. Weske, An open process model library,
in: F. Daniel, K. Barkaoui, S. Dustdar (Eds.), Proc. BPM 2011 Int. Work.,
Clermont-Ferrand, 2011, pp. 26–38.

[23] A.R. Hevner, S.T. March, J. Park, S. Ram, Design science in information
systems research, MIS Q. 28 (2004) 75–105.

[24] K. Peffers, T. Tuunanen, M.A. Rothenberger, S. Chatterjee, A design science
research methodology for information systems research, J. Manage. Inf.
Syst. 24 (2007) 45–77.

[25] R. Schütte, Grundsätze ordnungsmäßiger Referenzmodellierung: Konstruk-
tion konfigurations- und anpassungsorientierter Modelle, Gabler Verlag,
Wiesbaden, 1998.

[26] M. Rosemann, A. Schwegmann, P. Delfmann, Preparation of process model-
ing, in: J. Becker, M. Kugeler, M. Rosemann (Eds.), Process Manag. A Guid.
Des. Bus. Process., Springer-Verlag, Berlin, Heidelberg, 2011, pp. 41–89.

http://refhub.elsevier.com/S0306-4379(18)30083-8/sb1
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb1
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb1
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb1
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb1
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb2
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb2
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb2
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb2
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb2
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb3
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb3
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb3
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb3
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb3
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb4
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb4
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb4
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb4
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb4
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb4
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb4
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb6
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb6
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb6
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb6
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb6
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb6
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb6
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb7
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb7
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb7
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb8
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb8
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb8
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb10
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb10
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb10
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb14
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb14
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb14
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb14
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb14
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb16
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb16
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb16
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb16
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb16
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb20
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb20
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb20
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb23
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb23
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb23
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb24
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb24
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb24
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb24
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb24
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb25
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb25
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb25
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb25
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb25
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb26
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb26
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb26
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb26
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb26

86 H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87

[27] C.E. Bogan, M.J. English, Benchmarking for Best Practices: Winning Through
Innovative Adaptation, McGraw-Hill, New York, 1994.

[28] H.G. Rainey, R.W. Backoff, C.H. Levine, Comparing public and private
organizations, Publ. Adm. Rev. 36 (1976) 233–244.

[29] W.M.P. van der Aalst, Business process management: A comprehensive
survey, ISRN Softw. Eng. 2013 (2013) 1–37.

[30] F.D. Davis, Perceived usefulness, perceived ease of use, and user acceptance
of information technology, MIS Q. 13 (1989) 319–340.

[31] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, Non-Functional Requirements
in Software Engineering, Kluwer, Boston, 2000.

[32] J.-R. Rehse, P. Fettke, Towards situational reference model mining – Main
idea, procedure model & case study, in: J.M. Leimeister, W. Brenner (Eds.),
Proc. 13. Int. Tagung Wirtschaftsinformatik, WI 2017, St. Gallen, 2017, pp.
271–285.

[33] A. Martens, P. Fettke, P. Loos, A genetic algorithm for the inductive
derivation of reference models using minimal graph-edit distance ap-
plied to real-world business process data, in: D. Kundisch, L. Suhl, L.
Beckmann (Eds.), Proc. Multikonferenz Wirtschaftsinformatik 2014, MKWI
2014, Paderborn, 2014, pp. 1613–1626.

[34] M. La Rosa, M. Dumas, R. Uba, R. Dijkman, Business process model
merging: An approach to business process consolidation, ACM Trans. Softw.
Eng. Methodol. 22 (2013) 11:1–11:42.

[35] J. Leng, P. Jiang, Granular computing–based development of service process
reference models in social manufacturing contexts, Concurr. Eng. Res. Appl.
25 (2017) 95–107.

[36] C. Li, M. Reichert, A. Wombacher, Mining business process variants:
Challenges, scenarios, algorithms, Data Knowl. Eng. 70 (2011) 409–434.

[37] J.-R. Rehse, P. Fettke, Mining reference process models from large instance
data, in: M. Dumas, M. Fantinato (Eds.), Proc. BPM 2016 Int. Work., Rio de
Janeiro, 2017, pp. 11–22.

[38] J.-R. Rehse, P. Fettke, P. Loos, An execution-semantic approach to inductive
reference model development, in: Proc. 24th Eur. Conf. Inf. Syst., ECIS 2016,
İstanbul, 2016.

[39] B.N. Yahya, J.-Z. Wu, H. Bae, Generation of business process reference
model considering multiple objectives, Ind. Eng. Manag. Syst. 11 (2012)
233–240.

[40] B.N. Yahya, H. Bae, Generating reference business process model using
heuristic approach based on activity proximity, in: J. Watada, G. Phillips-
Wren, L.C. Jain, R.J. Howlett (Eds.), Proc. 3rd Int. Conf. Intell. Decis. Technol.,
Piraeus, 2011, pp. 469–478.

[41] B.N. Yahya, H. Bae, J. Bae, D. Kim, Generating valid reference business
process model using genetic algorithm, Int. J. Innov. Comput. Inf. Control
8 (2012) 1463–1477.

[42] P. Fettke, Eine Methode zur induktiven Entwicklung von Referenzmod-
ellen, in: D. Kundisch, L. Suhl, L. Beckmann (Eds.), Proc. Multikonferenz
Wirtschaftsinformatik 2014, MKWI 2014, Paderborn, 2014, pp. 1034–1047.

[43] J.-R. Rehse, P. Fettke, P. Loos, Eine Untersuchung der Potentiale automa-
tisierter Abstraktionsansätze für Geschäftsprozessmodelle im Hinblick auf
die induktive Entwicklung von Referenzprozessmodellen, in: R. Alt, B.
Franczyk (Eds.), Proc. 11th Int. Conf. Wirtschaftsinformatik, Leipzig, 2013,
pp. 1277–1291.

[44] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, Mining reference
process models and their configurations, in: R. Meersman, Z. Tari, P.
Herrero (Eds.), Proc. OTM 2008 Confed. Int. Work. Posters, ADI, AWeSoMe,
COMBEK, EI2N, IWSSA, Monet. OnToContent + QSI, ORM, PerSys, RDDS,
SEMELS, SWWS, Monterrey, 2008, pp. 263–272.

[45] B.N. Yahya, H. Bae, J. Bae, Process design selection using proximity score
measurement, in: S. Rinderle-Ma, S. Sadiq, F. Leyman (Eds.), Proc. BPM
2009 Int. Work., Ulm, 2010, pp. 330–341.

[46] J. Wang, T. Jin, R.K. Wong, L. Wen, Querying business process model
repositories: A survey of current approaches and issues, World Wide Web
17 (2014) 427–454.

[47] M. Kunze, M. Weske, Methods for evaluating process model search, in: N.
Lohmann, M. Song, P. Wohed (Eds.), Proc. BPM 2013 Int. Work., Beijing,
2013, pp. 379–391.

[48] R. Dijkman, M. Dumas, B. van Dongen, R. Käärik, J. Mendling, Similarity
of business process models: Metrics and evaluation, Inf. Syst. 36 (2011)
498–516.

[49] P. Delfmann, M. Steinhorst, H.-A. Dietrich, J. Becker, The generic model
query language GMQL – Conceptual specification, implementation, and
runtime evaluation, Inf. Syst. 47 (2015) 129–177.

[50] A. Polyvyanyy, C. Ouyang, A. Barros, W.M.P. van der Aalst, Process query-
ing: Enabling business intelligence through query-based process analytics,
Decis. Support Syst. 100 (2017) 41–56.

[51] Y. Ke, J. Cheng, J.X. Yu, Querying large graph databases, in: H. Kitagawa,
Y. Ishikawa, Q. Li, C. Watanabe (Eds.), Proc. 15th Int. Conf. Database Syst.
Adv. Appl., DASFAA 2010, Tsukuba, 2010, pp. 487–488.

[52] M. Momotko, K. Subieta, Process query language: A way to make workflow
processes more flexible, in: A. Benczúr, J. Demetrovics, G. Gottlob (Eds.),
Proc. 8th East Eur. Conf. Adv. Databases Inf. Syst., ADBIS 2004, Budapest,
2004, pp. 306–321.

[53] C. Di Francescomarino, P. Tonella, Crosscutting concern documentation by
visual query of business processes, in: D. Ardagna, M. Mecella, J. Yang
(Eds.), Proc. BPM 2008 Int. Work., Milano, 2009, pp. 18–31.

[54] H. Störrle, VMQL: A visual language for ad-hoc model querying, J. Vis. Lang.
Comput. 22 (2011) 3–29.

[55] A. Awad, BPMN-Q: A language to query business processes, in: M. Reichert,
S. Strecker, K. Turowski (Eds.), Proc. 2nd Int. Work. Enterp. Model. Inf. Syst.
Archit., St. Goar, 2007, pp. 115–128.

[56] C. Beeri, A. Eyal, S. Kamenkovich, T. Milo, Querying business processes with
BP-QL, Inf. Syst. 33 (2008) 477–507.

[57] S. Smirnov, H.A. Reijers, M. Weske, A semantic approach for business
process model abstraction, in: H. Mouratidis, C. Rolland (Eds.), Proc. 23rd
Int. Conf. Adv. Inf. Syst. Eng., London, 2011, pp. 497–511.

[58] J. Becker, L. Algermissen, T. Falk, Modernizing Processes in Public Adminis-
trations: Process Management in the Age of E-Government and New Public
Management, Springer-Verlag, Berlin, Heidelberg, 2012.

[59] Object Management Group, Business Process Model and Notation (BPMN):
Version 2.0, 2011, http://www.omg.org/spec/BPMN/2.0/PDF, (Accessed 23
November 2014).

[60] A.-W. Scheer, O. Thomas, O. Adam, Process modeling using event-driven
process chains, in: M. Dumas, W.M.P. van der Aalst, A.H.M. ter Hofstede
(Eds.), Process. Inf. Syst. Bridg. People Softw. Through Process Technol.,
Wiley, Hoboken, 2005, pp. 119–145.

[61] ISO/IEC, ISO/IEC 14977: 1996(e), 1996, http://www.cl.cam.ac.uk/~mgk25/
iso-14977.pdf, (Accessed 19 January 2018).

[62] E. Rolón, F. Ruiz, F. García, M. Piattini, Applying software metrics to
evaluate business process models, CLEI Electron. J. 9 (2006).

[63] A.-M. Sourouni, F. Lampathaki, S. Mouzakitis, Y. Charalabidis, D. Askounis,
Paving the way to egovernment transformation: interoperability registry
infrastructure development, in: M.A. Wimmer, H.J. Scholl, E. Ferro (Eds.),
Proc. 7th Int. Conf. Electron. Gov., Turin, 2008, pp. 340–351.

[64] M.E. Nissen, Redesigning reengineering through measurement-driven
inference, MIS Q. 22 (1998) 509–534.

[65] L. Aversano, T. Bodhuin, G. Canfora, M. Tortorella, A framework for
measuring business processes based on GQM, in: Proc. 37th Hawaii Int.
Conf. Syst. Sci., Waikoloa Village, 2004.

[66] European Commission, The European eGovernment Action Plan 2011-
2015: Harnessing ICT to promote smart, sustainable & innovative
Government, COM(2010), vol. 743, Brussels, 2010. http://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=COM:2010:0743:FIN:EN:PDF. (Accessed 17
March 2014).

[67] S. Limam Mansar, H.A. Reijers, Best practices in business process redesign:
use and impact, Bus. Process Manag. J. 13 (2007) 193–213.

[68] J. Alford, Defining the client in the public sector: A social-exchange
perspective, Public Adm. Rev. 62 (2002) 337–346.

[69] J. Becker, P. Bergener, M. Räckers, B. Weiß, A. Winkelmann, Pattern-
based semi-automatic analysis of weaknesses in semantic business process
models in the banking Sector, in: Proc. 18th Eur. Conf. Inf. Syst., Pretoria,
2010.

[70] P. Delfmann, S. Höhenberger, Supporting business process improvement
through business process weakness pattern collections, in: O. Thomas, F.
Teuteberg (Eds.), Proc. 12th Int. Conf. Wirtschaftsinformatik, Osnabrück,
2015, pp. 378–392.

[71] M.H. Jansen-Vullers, P.A.M. Kleingeld, M.W.N.C. Loosschilder, H.A. Reijers,
Performance measures to evaluate the impact of best practices, in: Proc.
Work. Dr. Consort. 19th Int. Conf. Adv. Inf. Syst. Eng., Trondheim, 2007,
pp. 359–368.

[72] A. Afonso, L. Schuknecht, V. Tanzi, Public sector efficiency: evidence for
new EU member states and emerging markets, Appl. Econ. 42 (2010)
2147–2164.

[73] L. Gelders, P. Mannaerts, J. Maes, Manufacturing strategy, performance
indicators and improvement programmes, Int. J. Prod. Res. 32 (1994)
797–805.

[74] R. Diestel, Graph Theory, fourth ed., Springer-Verlag, Heidelberg, 2010.
[75] M. Merz, M.V. Wüthrich, Mathematik für Wirtschaftswissenschaftler: Die

Einführung mit vielen ökonomischen Beispielen, Franz Vahlen, München,
2013.

[76] R. Klischewski, Ontologies for e-document management in public
administration, Bus. Process Manag. J. 12 (2006) 34–47.

[77] P. Dunleavy, H. Margetts, S. Bastow, J. Tinkler, New public management
is dead - long live digital-era governance, J. Public Adm. Res. Theory. 16
(2005) 467–494.

[78] J. Kwon, A. Wellings, S. King, Assessment of the java programming
language for use in high integrity systems, ACM SIGPLAN Not. 38 (2003)
34–46.

[79] S. Cass, The 2017 top programming languages, 2017, http://spectrum.ieee.
org/computing/software/the-2017-top-programming-languages, (Accessed
4 August 2017).

[80] TIOBE, TIOBE Index for 2017, 2017, https://www.tiobe.com/tiobe-index/,
(Accessed 4 August 2017).

http://refhub.elsevier.com/S0306-4379(18)30083-8/sb27
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb27
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb27
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb28
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb28
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb28
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb29
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb29
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb29
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb30
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb30
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb30
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb31
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb31
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb31
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb34
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb34
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb34
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb34
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb34
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb35
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb35
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb35
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb35
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb35
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb36
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb36
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb36
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb39
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb39
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb39
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb39
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb39
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb41
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb41
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb41
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb41
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb41
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb46
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb46
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb46
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb46
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb46
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb48
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb48
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb48
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb48
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb48
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb49
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb49
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb49
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb49
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb49
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb50
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb50
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb50
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb50
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb50
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb54
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb54
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb54
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb56
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb56
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb56
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb58
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb58
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb58
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb58
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb58
http://www.omg.org/spec/BPMN/2.0/PDF
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb60
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb60
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb60
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb60
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb60
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb60
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb60
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb62
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb62
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb62
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb64
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb64
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb64
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:0743:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:0743:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:0743:FIN:EN:PDF
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb67
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb67
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb67
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb68
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb68
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb68
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb72
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb72
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb72
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb72
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb72
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb73
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb73
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb73
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb73
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb73
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb74
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb75
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb75
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb75
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb75
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb75
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb76
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb76
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb76
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb77
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb77
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb77
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb77
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb77
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb78
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb78
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb78
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb78
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb78
http://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
http://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
http://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://www.tiobe.com/tiobe-index/

H. Scholta, M. Niemann, P. Delfmann et al. / Information Systems 84 (2019) 63–87 87

[81] H. Scholta, Similarity of activities in process models: Towards a metric for
domain-specific business process modeling languages, in: Proc. 24th Eur.
Conf. Inf. Syst., İstanbul, 2016.

[82] R. Schütte, J. Becker, Subjektivitätsmanagement bei Informationsmodellen,
in: K. Pohl, A. Schürr, G. Vossen (Eds.), Proc. Model., Münster, 1998, pp.
81–86.

[83] A. Koschmider, A. Oberweis, Ontology based business process description,
in: M. Missikoff, A. De Nicola (Eds.), Proc. Open Interop Work. Enterp.
Model. Ontol. Interoperability, Co-Located with CAiSE’05 Conf., Porto, 2005.

[84] H. Leopold, R.-H. Eid-Sabbagh, J. Mendling, L.G. Azevedo, F.A. Baião,
Detection of naming convention violations in process models for different
languages, Decis. Support Syst. 56 (2013) 310–325.

[85] F. Pittke, H. Leopold, J. Mendling, Automatic detection and resolution of
lexical ambiguity in process models, IEEE Trans. Softw. Eng. 41 (2015)
526–544.

[86] P. Delfmann, S. Herwig, Ł. Lis, Unified enterprise knowledge representa-
tion with conceptual models - Capturing corporate language in naming
conventions, in: Proc. 30th Int. Conf. Inf. Syst., Phoenix, 2009.

[87] F. Pittke, H. Leopold, J. Mendling, Spotting terminology deficiencies in
process model repositories, in: S. Nurcan, H.A. Proper, P. Soffer, J. Krogstie,
R. Schmidt, T. Halpin, I. Bider (Eds.), Proc. Int. Work. Bus. Process Model.
Dev. Support Int. Conf. Explor. Model. Methods Syst. Anal. Des., Valencia,
2013, pp. 292–307.

[88] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, Merging event-
driven process chains, in: R. Meersman, Z. Tari (Eds.), Proc. OTM 2008
Confed. Int. Conf. CoopIS, DOA, GADA, IS, ODBASE, Monterrey, 2008, pp.
418–426.

[89] J.M. Küster, C. Gerth, A. Förster, G. Engels, A tool for process merging in
business-driven development, in: Z. Bellahsene, C. Woo, E. Hunt, X. Franch,
R. Coletta (Eds.), Proc. Forum CAiSE’08 Conf., Montpellier, 2008, pp. 89–92.

[90] H.A. Reijers, R.S. Mans, R.A. van der Toorn, Improved model management
with aggregated business process models, Data Knowl. Eng. 68 (2009)
221–243.

[91] D.M.M. Schunselaar, E. Verbeek, W.M.P. van der Aalst, H.A. Reijers, Creating
sound and reversible configurable process models using CoSeNets, in: W.
Abramowicz, D. Kriksciuniene, V. Sakalauskas (Eds.), Proc. 15th Int. Conf.
Bus. Inf. Syst., Vilnius, 2012, pp. 24–35.

[92] S. Sun, A. Kumar, J. Yen, Merging workflows: A new perspective on
connecting business processes, Decis. Support Syst. 42 (2006) 844–858.

[93] M. Weidlich, R. Dijkman, J. Mendling, The ICoP framework: Identification
of correspondences between process models, in: B. Pernici (Ed.), Proc. 22nd
Int. Conf. Adv. Inf. Syst. Eng., Hammamet, 2010, pp. 483–498.

[94] M. Weidlich, E. Sheetrit, M.C. Branco, A. Gal, Matching business process
models using positional passage-based language models, in: W. Ng, V.C.
Storey, J.C. Trujillo (Eds.), Proc. 32th Int. Conf. Concept. Model., Hong-Kong,
2013, pp. 130–137.

[95] H. Leopold, M. Niepert, M. Weidlich, J. Mendling, R. Dijkman, H. Stucken-
schmidt, Probabilistic optimization of semantic process model matching,
in: A. Barros, A. Gal, E. Kindler (Eds.), Proc. 10th Int. Conf. Bus. Process
Manag., Tallinn, 2012, pp. 319–334.

[96] R. Dijkman, M. Dumas, L. García-Bañuelos, R. Käärik, Aligning business
process models, in: Proc. 13th IEEE Int. Enterp. Distrib. Object Comput.
Conf., Auckland, 2009, pp. 45–53.

[97] C. Klinkmüller, I. Weber, J. Mendling, H. Leopold, A. Ludwig, Increasing
recall of process model matching by improved activity label matching,
in: F. Daniel, J. Wang, B. Weber (Eds.), Proc. 11th Int. Conf. Bus. Process
Manag., Beijing, 2013, pp. 211–218.

[98] M.C. Branco, J. Troya, K. Czarnecki, J. Küster, H. Völzer, Matching business
process workflows across abstraction levels, in: R.B. France, J. Kazmeier,
R. Breu, C. Atkinson (Eds.), Proc. 15th Int. Conf. Model Driven Eng. Lang.
Syst., Innsbruck, 2012, pp. 626–641.

[99] C. Klinkmüller, I. Weber, Analyzing control flow information to improve
the effectiveness of process model matching techniques, Decis. Support
Syst. 100 (2017) 6–14.

http://refhub.elsevier.com/S0306-4379(18)30083-8/sb84
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb84
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb84
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb84
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb84
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb85
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb85
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb85
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb85
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb85
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb86
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb86
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb86
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb86
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb86
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb90
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb90
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb90
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb90
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb90
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb92
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb92
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb92
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb99
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb99
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb99
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb99
http://refhub.elsevier.com/S0306-4379(18)30083-8/sb99

	Semi-automatic inductive construction of reference process models that represent best practices in public administrations: A method
	Introduction
	Foundations and research gap
	Requirements
	Related work
	Methods for the inductive creation of reference process models
	Query languages for process models

	The method
	Overview
	Step 0: Source models
	Step 0: Merged model; step 1: Detection of common parts
	Step 2: Grouping
	GROUP BY
	CONTAINING
	WHERE

	Step 3: Evaluation
	HAVING
	ORDER BY
	Marking of groups

	Step 4: Assembling the reference model

	Demonstration
	Evaluation
	Implementation
	Workshop
	Research design
	Quantitative results
	Qualitative results

	Discussion and outlook
	Acknowledgment
	Conflict of interest
	Appendix A. Symbols
	Appendix B. Calculations of ranking criteria
	Appendix C. Questionnaire
	References

